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Abstract

There is growing interest in utilizing the range data of asset prices to study the role of volatility in financial markets. In this paper, a new range-based volatility model was used to examine the economic value of volatility timing in a mean-variance framework. We compared its performance with a return-based dynamic volatility model in both in-sample and out-of-sample volatility timing strategies. For a risk-averse investor, it was shown that the predictable ability captured by the dynamic volatility models is economically significant, and that a range-based volatility model performs better than a return-based one.
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1. Introduction
In recent years, there has been considerable interest in volatility. The extensive development of volatility modeling has been motivated by related applications in risk management, portfolio allocation, assets pricing and futures hedging. In discussions of econometric methodologies for estimating the volatility of individual assets, ARCH and GARCH have been emphasized most. Various applications in finance and economics are provided as a review in Bollerslev et al. (1992; 1994), and Engle (2004).
    Several studies have noted that range data based on the difference of high and low prices in a fixed interval can offer a sharper estimate of volatility than the return data. Range data are available for most financial assets and intuitively have more information than return data for estimating volatility. A number of studies have investigated this issue, starting with Parkinson’s (1980) research, and more recently, Brandt and Jones (2006), Chou (2005, 2006), and Martens and van Dijk (2007)
. Range is an unbiased estimator of the standard deviation. In particular, Chou (2005) proposed a conditional autoregressive range (CARR) model which can easily capture the dynamic volatility structure, and has obtained some insightful empirical evidences. The CARR model is a conditional mean model and it is easily to incorporate other explanatory variables. 
However, the literature above just focuses on the volatility forecast of a univariate asset. It should be noted that there have been some attempts to establish a relationship between multiple assets, such as VECH [see Bollerslev et al. (1988)], BEKK [see Engle and Kroner (1995)] and a constant conditional correlation model (CCC) [see Bollerslev (1990)], among others. VECH and BEKK allow time-varying covariance processes which are too flexible to estimate, and CCC with a constant correlation is too restrictive to apply to general applications. Seminal work on solving the puzzle was carried out by Engle (2002a). A dynamic conditional correlation
 (DCC) model proposed by Engle (2002a) provides another viewpoint to this problem. The estimation of DCC can be divided into two stages. The first step is to estimate univariate GARCH, and the second is to utilize the transformed standardized residuals to estimate time-varying correlations [see Engle and Sheppard (2001), Cappiello et al. (2006)].

    A new multivariate volatility, recently proposed by Chou et al. (2009), combines the range data of asset prices with the framework of DCC, namely range-based DCC
. The range-based DCC model is flexible and easy to be estimated through the two-step estimation. It also has the relative efficiency of the range data over the return data in estimating volatility. Through the statistical measures RMSE and MAE, based on four benchmarks of implied and realized covariance,
 they concluded that the range-based DCC model performs better than other return-based models (MA100, EWMA, CCC, return-based DCC, and diagonal BEKK). 

Because the empirical results in many studies show that forecast models can only explain a small quantity of the variations in time-varying volatilities, some studies have concentrated on whether volatility timing has economic value [see Busse (1999), Fleming et al. (2001, 2003), Marquering and Verbeek (2004), Thorp and Milunovich  (2007)]. The questions upon which we focused was whether the economic value of volatility timing for range-based volatility model still exists and whether investors are willing to switch from a return-based DCC to a range-based DCC model.

    In comparing the economic value of return-based and range-based models, it is helpful to use a suitable measure to capture the trade-off between risk and return. Most literature evaluates volatility models through error statistics and related applications but neglects the influence of asset expected returns. A more precise measurement should consider both of them, but only a few such studies have been made at this point. However, a utility function can easily connect them and build a comparable standard. Before entering into a detailed discussion for the economic value of volatility timing, it was necessary to clarify its definition in this paper. In short, the economic value of volatility timing is the gain compared with a static strategy. Our concern was to estimate the willingness of the investor with a mean variance utility to pay for a new volatility model rather than a static one. 

In light of the success of the range-based volatility model, the purpose of this paper was to examine its economic value in volatility timing by using the conditional mean-variance framework developed by Fleming et al. (2001). We considered an investor with different risk-averse levels using conditional volatility analysis to allocate three assets: stocks, bonds and cash. Fleming et al. (2001) extended the utility criterion derived from West et al. (1993) to test the economic value of volatility timing for short-horizon investors with different risk tolerance levels
. In addition to the short-horizon forecast of selected models, we also examined the economic value of longer horizon forecasts and an asymmetric range-based volatility model in our empirical study. This study may lead to a better understanding of range volatility.
The reminder is laid out as follows. Section II introduces the asset allocation methodology, economic value measurement, and the return-based and the range-based DCC. Section III describes the properties of data used and evaluates the performance of the different strategies. Finally, the conclusion is showed in section IV.
2. Methodologies

To carry out this study we used the framework of a minimum variance strategy, which was conductive to determining the accuracy of the time-varying covariances. We wanted to find the optimal dynamic weights of the selected assets and the implied economic value of a static strategy for a risk-adverse investor. Before applying the volatility timing strategies, we needed to build a time-varying covariance matrix. The details of the methodology are as follows.
2.1 Optimal Portfolio Weights in a Minimum Variance Framework
Initially, we considered a minimization problem for the portfolio variance subjected to a target return constraint. To derive our strategy, we let 
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Under the cost of carry model, we regarded the excess returns as the futures returns by applying regular no-arbitrage arguments
. It is clear that the covariance matrix 
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 of the spot returns is the same as that of the excess returns. Equation (2) can be simply expressed as:


[image: image17.wmf]1

arg

1

tettt

t

ttt

m

-

-

=

¢

Σ

μ

w

μ

Σ

μ

,                                                   (3)
where the vector 
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where 
[image: image23.wmf]1,

t

m

, and 
[image: image24.wmf]2,

t

m

 are the futures returns of S&P 500 index (S&P 500) and 10-year Treasury bond (T-bond) in our empirical study. In addition, futures contracts are easy to be traded and have lower transaction cost compared to spot contracts.
    The above analysis pointed out that the optimal portfolio weights were time-varying. Here we assumed the conditional mean 
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. Therefore, the dynamics of weights only depend on the conditional covariance 
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. In this study, the optimal strategy was obtained based on a minimum variance framework subject to a given return.
The mean-variance framework above is used to derive the optimal portfolio weights under different target returns. In the following section, we want to build criterion
 to compare means and variances of the portfolios from the static and dynamic strategies. However, it is not easy to decide the best strategy, especially for the investors with different risk aversions. In this study, we want to apply the quadratic utility function to calculate economic value under some settings.
2.2 Economic Value of Volatility Timing

Fleming et al. (2001) uses a generalization of the West et al. (1993) criterion which builds the relationship between a mean-variance framework and a quadratic utility to capture the trade-off between risk and return for ranking the performance of forecasting models. According to their work, the investor’s utility can be defined as:
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where 
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For comparisons across portfolios, we assumed that the investor had a constant relative risk aversion
 (CRRA),
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 is a constant. The CRRA setting means an investor’s loss tolerance increases in proportion to the investor’s wealth. It implies that the expected utility is linearly related to wealth. With this assumption, the average realized utility 
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where 
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 is the initial wealth. 
Therefore, the value of volatility timing calculated by equating the average utilities for two alternative portfolios is expressed as: 
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where 
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 is the maximum expense that an investor would be willing to pay to switch from the strategy a to the strategy b. 
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. If the expense 
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 is a positive value, it means the strategy b is more valuable than the strategy a. In our empirical study, we reported 
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2.3 Return-based and Range-based DCC
We used the DCC model of Engle (2002a) to estimate the covariance matrix of multiple asset returns. It is a direct extension of the CCC model of Bollerslev (1990). The covariance matrix 
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where, Dt is the 
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where 
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    We estimated the DCC model with a two-stage estimation through quasi-maximum likelihood estimation (QMLE) to get consistent parameter estimates. The log-likelihood function can expressed as 
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. The explanation is more fully developed in Engle and Sheppard (2001) and Engle (2002a).
In addition to using GARCH to construct standardized residuals, we can also build them by other univariate volatility models. In this paper, CARR was used as an alternative to verify whether the specification selected adequately suits DCC or not.

The CARR model is a special case of the multiplicative error model (MEM) of Engle (2002b). It can be expressed as:
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 is calculated by the difference between logarithm high and low prices of the ith asset during a fixed time interval t, and it is also a proxy of standard deviation. 
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.
3. Empirical Results
The empirical data employed in this paper consists of the stock index futures, bond futures and the risk-free rate. As to the above-mentioned method, we applied the futures data to examine the economic value of volatility timing for return-based and range-based DCC. Under the cost of the carry model, the results in this case can be extended to underlying spot assets [see Fleming et al. (2001)]. In addition to avoiding the short sale constraints, this procedure reduces the complexity of model setting. To address this issue, we used the S&P 500 futures (traded at CME) and the T-bond futures (traded at CBOT) as the empirical samples. According to Chou et al. (2009), the futures data were taken from Datastream, sampling from January 6, 1992 to December 29, 2006 (15 years, 782 weekly observations). Datastream provided the nearest contract and rolls over to the second nearby contract when the nearby contract approaches maturity. We also used the 3-month Treasury bill rate to substitute for the risk-free rate. The Treasury bill rate is available from the Federal Reserve Board.
< Figure 1 is inserted about here >
    Figure 1 shows the graphs for close prices (Panel A) returns (Panel B) and ranges (Panel C) of the S&P 500 and T-bond futures over the sample period. Table 1 shows summary statistics for the return and range data on the S&P 500 and T-bond futures. The return was computed as the difference of logarithm close prices on two continuous weeks. The range was defined by the difference of the high and low prices in a logarithm type. The annualized mean and standard deviation in percentage (8.210, 15.232) of the stock futures returns were both larger than those (0.853, 6.168) of the bond futures returns. This fact indicated that the more volatile market may have a higher risk premium. Both futures returns have negative skewness and excess kurtosis, indicating a violation of the normal distribution. The range mean (3.134) of the stock futures prices was larger than that (1.306) of the bond futures prices. This is reasonable because the range is a proxy of volatility. The Jarque-Bera statistic was used to test the null of whether the return and range data were normally distributed. Both return and range data rejected the null hypothesis. The simple correlation between stock and bond returns was small
 (-0.023), but this does not imply that their relationship was very weak. In our latter analysis, we showed that the dynamic relationship of stocks and bonds will be more realistically revealed by the conditional correlations analysis. 
< Table 1 is inserted about here >
3.1 The In-sample Comparison

To obtain an optimal portfolio, we used the dynamic volatility models to estimate the covariance matrices. The parameters fitted for return-based and range-based DCC, were both estimated and arranged in Table 2. We divided the table into two parts corresponding to the two steps in the DCC estimation. In Panel A of Table 2, one can use GARCH (fitted by return) or CARR (fitted by range) with individual assets to obtain the standardized residuals. Figure 2 provides the volatility estimate of the S&P 500 futures and the T-bond futures based on GARCH and CARR. Then, these standardized residuals series were brought into the second stage for dynamic conditional correlation estimating. Panel B of Table 2 shows the estimated parameters of DCC under the quasi-maximum likelihood estimation (QMLE).
< Table 2 is inserted about here >

< Figure 2 is inserted about here >

The correlation and covariance estimates for return-based and range-based DCC are shown in Figure 3. It seems that the correlation became more negative at the end of 1997. A deeper investigation is given in Connolly et al. (2005). 
< Figure 3 is inserted about here >

Following the model estimation, we constructed the static portfolio (built by OLS) using the unconditional mean and covariance matrices to get the economic values of dynamic models. Under the minimum variance framework, the weights of the portfolio were computed by the given expected return and the conditional covariance matrices estimated by return-based and range-based DCC. Then, we compared the performance of the volatility models on 11 different target annualized returns (5% - 15%, 1% in an interval).
< Table 3 is inserted about here >
Table 3 shows how the performance comparisons varied with the target returns and the risk aversions. Panel A of Table 3 shows the annualized means (
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) and volatilities (
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) of the portfolios estimated from three methods, return-based DCC, range-based DCC and OLS. At a quick look, the annualized Sharpe ratios
 calculated from return-based DCC (0.680) and range-based DCC (0.699) were higher than the static model (0.560). Panel B of Table 3 shows the average switching fees (
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 were 1, 5, and 10. As for the performance fees with different relative risk aversions, in general, an investor with a higher risk aversion should be willing to pay more to switch from the static portfolio to the dynamic ones. With higher target returns, the performance fees increased steadily. In addition, Panel B of Table 3 also reports the performance fees for switching from return-based DCC to range-based DCC. Positive values for all cases show that the range-based volatility model can give more significant economic value in forecasting covariance matrices than return-based ones. In the real world, the transaction costs should be considered when the dynamic strategies are compared to the static one. For S&P 500 futures, the bid/ask spread and round-trip commission totally cost about $0.10 index unit. The annualized cost of a one-way transaction in our study can be calculated by 0.05/941.55×52＝0.28%, where 941.55 is an average index level from 1992 to 2006. It means the advantage
 of the dynamic strategies will not be offset by the transaction costs. Figure 4 plots the weights of an in-sample minimum volatility portfolio derived from two dynamic models. OLS has constant weights for cash, stocks, and bonds, i.e. -0.1934, 0.7079, and 0.4855.
< Figure 4 is inserted about here >

3.2 The Out-of-sample Comparisons
For robust inference, a similar approach was utilized to estimate the value of volatility timing in the out-of-sample analysis. Here the rolling sample approach was adopted for all out-of-sample estimations. This meant that the rollover OLS method replaced the conventional OLS method used in the in-sample analysis. Each forecasting value was estimated by 521 observations over about 10 years. Then, the rolling sample method provided 261 forecasting values for the one period ahead comparison. The first forecasted value occurred the week of January 4, 2002. 
< Table 4 is inserted about here >
    Table 4 reports how the performance comparisons varied with the target returns and the risk aversions for one period ahead out-of-sample forecast. We obtained a consistent conclusion with Table 3. The estimated Sharpe ratios calculated from return-based DCC, range-based DCC and rollover OLS were 0.540, 0.586 and 0.326, respectively. The performance fees switching from rollover OLS to DCC were all positive. In total, the out-of-sample comparison supported the former inference. Figure 5 plots the weights that minimize conditional volatility while setting the expected annualized return equal at 10%. 
< Figure 5 is inserted about here >

In addition to examining the performance of short-horizon investors, we further reported the results of the long-horizon asset allocations. Table 5 reports one to thirteen periods ahead of out-of-sample performance for three methods. Here the rolling sample approach provided 249 forecasting values for each out-of-sample comparison. The portfolio weights for all strategies were obtained from the weekly estimates of the out-of-sample conditional covariance matrices with a fixed target return (10%). In general, the Sharpe ratios taken from range-based DCC were the largest, and return-based DCC were the next. For each strategy, however, we could not find an obvious trend in the Sharpe ratios forecasting periods ahead. As for the result of the performance fees, it seems reasonable to conclude that an investor would still be willing to pay to switch from rollover OLS to DCC. Moreover, the economic value seems to indicate a decreasing trend for forecasting periods ahead. For a longer forecasting horizon (12-13 weeks), however, the results of estimated switching fees were mixed. Switching from return-based DCC to range-based DCC always remains positive.
< Table 5 is inserted about here >
    Thorp and Milunovich (2007) show that a risk-averse investor holding selected international equity indices, with 
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= 2, 5, and 10, would pay little for symmetric to asymmetric forecasts. In some cases, the switching fees would even be negative. In order to further understand this argument, we examined it based on the range-based volatility model. Chou (2005) provides an asymmetric range model namely CARRX: 
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 denotes the Hadamard matrix product operator, i.e. element-wise multiplication. Table 6 shows the one period ahead performance of the volatility timing values for asymmetric range-based DCC compared with rollover OLS. The switching fees from rollover OLS to asymmetric range DCC seem to be smaller than the fees from rollover OLS to symmetric range DCC in Table 4. One of the reasons for this may be the poor performance of the bond data. In this case, it is not valuable to switch the symmetric strategy to the asymmetric one. 
< Table 6 is inserted about here >
4. Conclusion
In this paper, we examined the economic value of volatility timing for the range-based volatility model in utilizing range data which combines CARR with a DCC structure. Applying S&P 500 and T-bond futures to a mean-variance framework with a no-arbitrage setting can be extended to spot asset analysis. By means of the utility of a portfolio, the economic value of dynamic models can be obtained by comparing it to OLS. Both the in-sample and out-of-sample results show that a risk-averse investor should be willing to switch from OLS to DCC. Moreover, the switching fees from return-based DCC to range-based DCC were always positive. We concluded that the range-based volatility model has more significant economic value than the return-based one. The results gave robust inferences for supporting the range-based volatility model in forecasting volatility.
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Table 1: Summary Statistics for Weekly S&P 500 and T-bond Futures Return and Range Data, 1992-2006

The table provides summary statistics for the weekly return and range data on S&P 500 stock index futures and T-bond Futures. The returns and ranges were computed by 
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, respectively. The Jarque-Bera statistic is used to test the null of whether the return and range data are normally distributed. The values presented in parentheses are p-values. The annualized values of means (standard deviation) for S&P 500 and T-bond futures were 8.210 (15.232) and 0.853 (6.168), respectively. The simple correlation between stock and bond returns was -0.023. The sample period ranges form January 6, 1992 to December 29, 2006 (15 years, 782 observations) and all futures data were collected from Datastream.

	
	S&P 500 Futures
	T-Bond Futures

	
	Return
	Range
	Return
	Range

	Mean
	0.158
	3.134
	0.016
	1.306

	Median
	0.224
	2.607
	0.033
	1.194

	Maximum
	8.124
	13.556
	2.462
	4.552

	Minimum
	-12.395
	0.690
	-4.050
	0.301

	Std. Dev.
	2.112
	1.809
	0.855
	0.560

	Skewness
	-0.503
	1.756
	-0.498
	1.390

	Kurtosis
	6.455
	7.232
	4.217
	6.462

	Jarque-Bera
	421.317
	985.454
	80.441
	642.367

	
	(0.000)
	(0.000)
	(0.000)
	(0.000)


Table 2: Estimation Results of Return-based and Range-based DCC Model Using Weekly S&P500 and T-bond Futures, 1992-2006
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. The three formulas above are GARCH, CARR and the conditional correlation equations respectively of the standard DCC model with mean reversion. The table shows estimations of the three models using the MLE method. Panel A is the first step of the DCC model estimation. The estimation results of GARCH and CARR models for two futures were presented here. Q(12) is the Ljung–Box statistic for the autocorrelation test with 12 lags. Panel B is the second step of the DCC model estimation. The values presented in parentheses are t-ratios for the model coefficients and p-values for Q(12).
	Panel A: Volatilities Estimation of GARCH and CARR models

	
	S&P500 Futures
	T-bond Futures

	
	GARCH
	CARR
	GARCH
	CARR

	c
	0.188
	
	0.008
	

	
	(3.256)
	
	(0.242)
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	0.019
	0.103
	0.028
	0.075

	
	(1.149)
	(2.923)
	(1.533)
	(2.810)
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	0.051
	0.248
	0.060
	0.157

	
	(3.698)
	(9.090)
	(2.031)
	(5.208)
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	0.946
	0.719
	0.902
	0.785

	
	(71.236)
	(23.167)
	(18.645)
	(18.041)

	Q(12)
	26.322
	5.647
	15.872
	23.121

	
	(0.010)
	(0.933)
	(0.197)
	(0.027)

	Panel B: Correlation Estimation of Return- and Range-based DCC Models

	
	S&P500 and T-bond

	
	Return-based DCC
	Range-based DCC
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	0.037
	0.043

	
	(4.444)
	(4.679)

	
[image: image105.wmf]b

ˆ


	0.955
	0.951

	
	(85.621)
	(80.411)


Table 3: In-sample Comparison of the Volatility Timing Values in the Minimum Volatility Strategy Using Different Target Returns, 1992-2006

The table reports the in-sample performance of the volatility timing strategies with different target returns. The target returns were from 5% to 15% (annualized). The weights for the volatility timing strategies were obtained from the weekly estimates of the conditional covariance matrix and the different target return setting. Panel A shows the annualized means (
[image: image106.wmf]m

) and volatilities (
[image: image107.wmf]s

) for each strategy. The estimated Sharpe ratios for the return-based DCC model, the range-based DCC model, and the OLS strategy were 0.680, 0.699, and 0.560, respectively. Panel B shows the average switching annualized fees (
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) from one strategy to another. The values of the constant relative risk aversion
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were 1, 5, and 10.

	Panel A: Means and Volatilities of Optimal Portfolios

	Target return(%) 
	Return-based DCC
	Range-based DCC
	OLS
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	5
	5.201
	2.100
	5.241
	2.100
	5.000
	2.190

	6
	6.366
	3.814
	6.438
	3.813
	6.000
	3.977

	7
	7.530
	5.527
	7.635
	5.526
	7.000
	5.764

	8
	8.694
	7.241
	8.832
	7.239
	8.000
	7.551

	9
	9.859
	8.954
	10.028
	8.952
	9.000
	9.338

	10
	11.023
	10.668
	11.225
	10.665
	10.000
	11.125

	11
	12.187
	12.381
	12.422
	12.378
	11.000
	12.912

	12
	13.352
	14.095
	13.619
	14.091
	12.000
	14.699

	13
	14.516
	15.808
	14.815
	15.804
	13.000
	16.486

	14
	15.680
	17.521
	16.012
	17.517
	14.000
	18.273

	15
	16.845
	19.235
	17.209
	19.230
	15.000
	20.060

	Panel B: Switching Fees with Different Relative Risk Aversions

	Target return(%)
	OLS to Return DCC
	OLS to Range DCC
	Return to Range DCC
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	5
	0.303
	0.376
	0.393
	0.343
	0.417
	0.434
	0.040
	0.041
	0.041

	6
	0.703
	0.950
	1.008
	0.777
	1.025
	1.084
	0.074
	0.076
	0.076

	7
	1.244
	1.771
	1.897
	1.353
	1.883
	2.009
	0.109
	0.112
	0.112

	8
	1.929
	2.845
	3.063
	2.073
	2.994
	3.213
	0.144
	0.149
	0.151

	9
	2.761
	4.173
	4.507
	2.940
	4.360
	4.696
	0.180
	0.189
	0.191

	10
	3.739
	5.753
	6.224
	3.956
	5.979
	6.453
	0.217
	0.230
	0.233

	11
	4.866
	7.578
	8.206
	5.121
	7.846
	8.477
	0.255
	0.273
	0.277

	12
	6.142
	9.641
	10.441
	6.434
	9.951
	10.754
	0.294
	0.318
	0.324

	13
	7.565
	11.932
	12.914
	7.897
	12.283
	13.270
	0.334
	0.365
	0.373

	14
	9.135
	14.436
	15.609
	9.507
	14.831
	16.009
	0.375
	0.414
	0.424

	15
	10.851
	17.142
	18.509
	11.262
	17.580
	18.952
	0.418
	0.466
	0.479


Table 4: Out-of-sample Comparison for the One Period Ahead Volatility Timing Values in the Minimum Volatility Strategy with Different Target Returns, 1992-2006

The table reports the one period ahead out-of-sample performance of the volatility timing strategies with different target returns. There were 521 observations in each of the estimated models and the rolling sample approach provided 261 forecasting values for each out-of-sample comparison. The first forecasted value occurred the week of January 4, 2002. The target returns were from 5% to 15% (annualized). The weights for the volatility timing strategies were obtained from the weekly estimates of the one period ahead conditional covariance matrix and the different target return setting. Panel A shows the annualized means (
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) and volatilities (
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) for each strategy. The estimated Sharpe ratios for the return-based DCC model, the range-based DCC model, and the rollover OLS strategy were 0.540, 0.586, and 0.326, respectively. Panel B shows the average switching annualized fees (
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D

) from one strategy to another. The values of the constant relative risk aversion were 1, 5, and 10.

	Panel A: Means and Volatilities of Optimal Portfolios

	Target return(%)
	Return-based DCC
	Range-based DCC
	Rollover OLS
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	5
	4.691
	1.698
	4.747
	1.661
	4.344
	1.749

	6
	5.438
	3.083
	5.540
	3.016
	4.808
	3.176

	7
	6.186
	4.468
	6.333
	4.370
	5.273
	4.603

	8
	6.933
	5.853
	7.127
	5.725
	5.737
	6.030

	9
	7.681
	7.239
	7.920
	7.080
	6.202
	7.456

	10
	8.428
	8.624
	8.714
	8.435
	6.667
	8.883

	11
	9.176
	10.009
	9.507
	9.790
	7.131
	10.310

	12
	9.923
	11.394
	10.300
	11.145
	7.596
	11.737

	13
	10.671
	12.779
	11.094
	12.500
	8.060
	13.164

	14
	11.418
	14.165
	11.887
	13.854
	8.525
	14.591

	15
	12.166
	15.550
	12.680
	15.209
	8.990
	16.018

	Panel B: Switching Fees with Different Relative Risk Aversions

	Target return(%)
	OLS to Return DCC
	OLS to Range DCC
	Return to Range DCC
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	5
	0.393
	0.425
	0.433
	0.481
	0.537
	0.550
	0.089
	0.112
	0.118

	6
	0.781
	0.890
	0.916
	0.991
	1.176
	1.220
	0.210
	0.289
	0.308

	7
	1.232
	1.463
	1.518
	1.606
	1.998
	2.090
	0.377
	0.545
	0.585

	8
	1.746
	2.144
	2.239
	2.328
	3.001
	3.159
	0.589
	0.882
	0.953

	9
	2.323
	2.935
	3.079
	3.156
	4.185
	4.425
	0.848
	1.303
	1.413

	10
	2.963
	3.834
	4.039
	4.092
	5.545
	5.881
	1.154
	1.810
	1.967

	11
	3.667
	4.842
	5.116
	5.133
	7.077
	7.522
	1.509
	2.402
	2.617

	12
	4.435
	5.956
	6.309
	6.280
	8.774
	9.338
	1.913
	3.083
	3.363

	13
	5.267
	7.174
	7.614
	7.531
	10.629
	11.321
	2.366
	3.851
	4.206

	14
	6.162
	8.495
	9.029
	8.885
	12.634
	13.460
	2.869
	4.707
	5.146

	15
	7.121
	9.914
	10.548
	10.340
	14.781
	15.746
	3.422
	5.651
	6.181


Table 5: Out-of-sample Comparison for One to Thirteen Periods Ahead Volatility Timing Values in the Minimum Volatility Strategy, 1992-2006

The table reports the one to thirteen periods ahead out-of-sample performance of the volatility timing strategies with the fixed 10% (annualized) target return. The weights for the volatility timing strategies were obtained from the weekly estimates of the one to thirteen periods ahead conditional covariance matrix. There were 521 observations in each of the estimated models and the rolling sample approach provided 249 forecasting values for each out-of-sample comparison. The first forecasted mean value occurred the week of January 4, 2002. Panel A shows the annualized means (
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), volatilities (
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), and Sharpe ratios (SR) for each strategy. Panel B shows the average switching annualized fees (
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) from one strategy to another. The values of the constant relative risk aversion were 1, 5, and 10.

	Panel A: Means and Volatilities of Optimal Portfolios

	Periods Ahead
	Return-based DCC
	Range-based DCC
	Rollover OLS
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	SR

	1
	7.717
	8.724
	0.452
	8.060
	8.540
	0.502
	6.022
	8.956
	0.251

	2
	7.868
	8.830
	0.464
	8.562
	8.556
	0.560
	6.068
	8.933
	0.257

	3
	7.371
	8.807
	0.408
	8.312
	8.572
	0.529
	6.660
	8.931
	0.323

	4
	8.117
	8.838
	0.491
	8.750
	8.604
	0.578
	7.103
	8.928
	0.373

	5
	8.464
	8.860
	0.529
	9.200
	8.653
	0.627
	6.869
	8.989
	0.344

	6
	9.088
	8.903
	0.597
	9.600
	8.637
	0.674
	7.232
	8.973
	0.385

	7
	9.361
	8.840
	0.632
	10.033
	8.629
	0.725
	7.872
	8.945
	0.458

	8
	8.853
	8.897
	0.571
	9.429
	8.683
	0.651
	7.644
	8.975
	0.431

	9
	9.806
	8.878
	0.679
	10.093
	8.664
	0.729
	8.476
	9.023
	0.521

	10
	9.746
	8.887
	0.672
	9.576
	8.695
	0.667
	8.189
	8.983
	0.491

	11
	9.436
	8.908
	0.636
	8.986
	8.712
	0.598
	8.031
	8.910
	0.478

	12
	8.737
	9.003
	0.551
	8.076
	8.791
	0.489
	7.424
	8.853
	0.412

	13
	8.713
	9.111
	0.542
	8.272
	8.914
	0.505
	7.794
	8.867
	0.453

	Panel B: Switching Fees with Different Relative Risk Aversions

	Periods Ahead
	OLS to Return DCC
	OLS to Range DCC
	Return to Range DCC
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	1
	2.772
	3.546
	3.727
	3.944
	5.289
	5.599
	1.196
	1.831
	1.983

	2
	2.282
	2.633
	2.716
	4.223
	5.448
	5.731
	1.970
	2.914
	3.137

	3
	1.293
	1.721
	1.823
	3.308
	4.495
	4.772
	2.029
	2.830
	3.019

	4
	1.440
	1.758
	1.834
	3.152
	4.244
	4.499
	1.728
	2.544
	2.738

	5
	2.210
	2.665
	2.773
	3.900
	5.032
	5.297
	1.712
	2.446
	2.622

	6
	2.191
	2.442
	2.503
	3.938
	5.078
	5.345
	1.775
	2.730
	2.958

	7
	1.993
	2.373
	2.464
	3.647
	4.740
	4.997
	1.674
	2.440
	2.625

	8
	1.581
	1.861
	1.928
	3.161
	4.172
	4.410
	1.597
	2.369
	2.555

	9
	2.028
	2.556
	2.683
	3.319
	4.578
	4.875
	1.313
	2.103
	2.295

	10
	2.019
	2.370
	2.455
	2.753
	3.767
	4.007
	0.753
	1.465
	1.638

	11
	1.416
	1.424
	1.426
	1.891
	2.591
	2.758
	0.489
	1.209
	1.383

	12
	0.593
	0.037
	-0.100
	0.945
	1.164
	1.217
	0.358
	1.128
	1.313

	13
	-0.269
	-1.202
	-1.436
	0.251
	0.078
	0.035
	0.518
	1.243
	1.417


Table 6: The One Period Ahead Performance of the Volatility Timing Values for the Asymmetric Range-based Volatility Model, 1992-2006

The table reports the one period ahead out-of-sample performance of the volatility timing strategies for the asymmetric range-based volatility model with different target returns. There were 521 observations in each of the estimated models and the rolling sample approach provided 261 forecasting values for each out-of-sample comparison. The first forecasted value occurred the week of January 4, 2002. The target returns were from 5% to 15% (annualized). The weights for the volatility timing strategies were obtained from the weekly estimates of the one period ahead conditional covariance matrix and the different target return setting. The annualized means (
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) and volatilities (
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) of the optimal portfolio are shown here. 
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 is the average switching annualized fee from the rollover OLS model to the asymmetric range-based volatility model. The estimated Sharpe ratio for the asymmetric range-based DCC model was 0.521. The values of the constant relative risk aversion were set as 1, 5, and 10.

	Target return(%)
	Means and Volatilities of Optimal Portfolios for Asymmetric Range-based DCC
	Switching Fees from Rollover OLS to Asymmetric Range-based DCC
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	5
	4.643
	1.666
	0.373
	0.425
	0.438

	6
	5.352
	3.025
	0.787
	0.962
	1.003

	7
	6.060
	4.384
	1.301
	1.670
	1.757

	8
	6.769
	5.744
	1.915
	2.550
	2.699

	9
	7.478
	7.103
	2.630
	3.601
	3.827

	10
	8.187
	8.462
	3.445
	4.818
	5.136

	11
	8.895
	9.821
	4.361
	6.199
	6.621

	12
	9.604
	11.180
	5.377
	7.738
	8.274

	13
	10.313
	12.540
	6.491
	9.428
	10.087

	14
	11.022
	13.899
	7.703
	11.262
	12.050

	15
	11.730
	15.258
	9.011
	13.232
	14.155


Panel A: Close Prices
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Panel B: Returns
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Panel C: Ranges

[image: image171.emf]0

4

8

12

16

92 94 96 98 00 02 04 06

S&P 500

0

1

2

3

4

5

92 94 96 98 00 02 04 06

Tbond


Figure 1: S&P 500 Index Futures and T-bond Futures Weekly Closing Prices, Returns and Ranges, 1992-2006. This figure shows the weekly close prices, returns, and ranges of S&P 500 index futures and 10-year Treasury bond (T-bond) futures over the sample period.

Panel A: Volatility Estimates for the GARCH Model
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Panel B: Volatility Estimates for the CARR Model

[image: image173.emf]0

1

2

3

4

5

6

7

8

1992 1994 1996 1998 2000 2002 2004 2006

S&P 500 Tbond


Figure 2: In-sample Volatility Estimates for the GARCH and CARR Model

Panel A: Correlation Estimates
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Panel B: Covariance Estimates
[image: image175.emf]-3

-2

-1

0

1

2

1992 1994 1996 1998 2000 2002 2004 2006

return DCC range DCC


Figure 3: In-sample Correlation and Covariance Estimates for the Return-based and Range-based DCC Model

Panel A: In-sample Portfolio Weights Derived by the Return-based DCC Model
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Panel B: In-sample Portfolio Weights Derived by the Range-based DCC Model
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Figure 4: In-sample Minimum Volatility Portfolio Weight Derived by the Dynamic Volatility Model. Panels A and B show the weights that minimize conditional volatility while setting the expected annualized return equal at 10%. The OLS model had constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, and 0.4855.
Panel A: Out-of-sample Portfolio Weight Derived by the Return-based DCC Model
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Panel B: Out-of-sample Portfolio Weight Derived by the Range-based DCC Model
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Panel C: Out-of-sample Portfolio Weight Derived by the Rollover OLS Model
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Figure 5: Out-of-sample Minimum Volatility Portfolio Weight Derived by the Dynamic Volatility Model for One Period Ahead Estimates. Panels A, B, and C show the one period ahead weights that minimize conditional volatility while the expected annualized return is set at 10%. Different from the in-sample case, the rolling sample method was used in estimating the portfolio weights. The portfolio weights in the rollover OLS model (Panel C) also vary with time. The first forecasted weights occurred the week of January 4, 2002.
* Corresponding author: Institute of Economics, Academia Sinica, #128, Yen-Jio-Yuan Road, Sec 2, Nankang, Taipei, Taiwan. Telephone: 886-2-27822791 ext 321, fax: 886-2-27853946, email: � HYPERLINK "mailto:rchou@ieas.econ.sinica.edu.tw" �rchou@econ.sinica.edu.tw�.


� See also Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992), Yang and Zhang (2000), and Alizadeh et al. (2002).


� See Tsay (2002) and Tse and Tsui (2002) for other related methods for estimating the time-varying correlations.


� Fernandes et al. (2005) propose another kind of multivariate CARR model using the formula � EMBED Equation.DSMT4  ���. However, this method can only apply to a bivariate case. 


� Daily data are used to build four proxies for weekly covariances, i.e. implied return-based DCC, implied range-based DCC, implied DBEKK, and realized covariances.


� They found that volatility-timing strategy based on one-step ahead estimates of the conditional covariance matrix [see Foster and Nelson (1996)] significantly outperformed the unconditional efficient static portfolios.


� Through out this paper, we have used blackened letters to denote vectors or matrices.


� There are no costs for futures investment. This means the futures return equals the spot return minus the risk-free rate.


� The changes in expected returns are not easy to detect. Merton (1980) points out that the volatility process is more predictable than the return series.


� The Sharpe ration is one of candidates for comparison. However, it may underestimate the performance of dynamic strategies, see Marquering and Verbeek (2004).


� West, et al. (1993), Fleming et al. (2001), and Corte et al. (2009) also applied CRRA to their studies.


� In our setting, we let the strategy pair (a,b) be (OLS, return-based DCC), (OLS, range-based DCC) and (return-based DCC, range-based DCC), respectively. Because the rolling sample method was adopted in the out-of-sample comparison, this type of OLS was named by rollover OLS.


� Parkinson (1980) derived the adjustment ratio as a constant, 0.361, but an asset price was required to follow a geometric Brownian motion with zero drift, which is not truly empirical.


� The results are different from the positive correlation value (sample period 1983-1997) in Fleming, et al. (2001). After 1997, the relationship between S&P 500 and T-bond presented a reverse condition.


� The Sharpe ratio is constant with different target multipliers. For the further details, see Engle and Colacito (2006).


� With a fixed target return 10%, the economic advantage is about 6% for an investor with relative risk aversion = 5. 
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