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Abstract
Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) derived model-free implied volatility under the assumption of pure diffusion and asset price processes with jumps. This paper extends their model-free implied volatility to the processes of asset prices and volatility with jumps, comparing the forecasting ability of different volatility estimates for individual options based upon the underlying assets of 304 US firms between 4 January 1999 and 31 December 2004. The volatility estimates include model-free implied volatility, Black-Scholes implied volatility, realized volatility (calculated by the use of high-frequency intraday data) and conditional volatility under the GJR model. The results show that for one-day-ahead estimation, 54 per cent of the firms indicate that realized volatility, as measured by five-minute interval returns, outperforms other estimates. When the forecast horizon agrees with the period from the closed day after the expiration date to the next expiration, Black-Scholes implied volatility demonstrates the best performance for 62 per cent of the firms. The empirical results also show that the forecasting performance of model-free implied volatility is worse than that of Black-Scholes implied volatility, regardless of whether the estimation is of one-day-ahead or monthly predictions. Overall, the results show that there is less volatility information contained in the model-free expectations than in at-the-money implied volatility.
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1.
Introduction
It is clear from several recent studies that option implied volatility has become widely recognized as a good estimator for predicting the future volatility of stock indices (Christensen and Prabhala, 1998; Fleming, 1998; Lin, Strong and Xu, 1998; and Blair, Poon and Taylor, 2001). However, the strictest argument of Black-Scholes implied volatility (Black and Scholes, 1978) is based upon an assumption of constant volatility; therefore, conditional volatility under time series models, such as ARCH (Engle, 1982), GARCH (Bollerslev, 1986) and other ARCH specifications, are also of significant importance to the extant literature.
Alternative implied volatility, referred to as model-free implied volatility, was constructed by Britten-Jones and Neuberger (2000), thereby extending the work of Derman and Kani (1994), Dupire (1994, 1997) and Rubinstein (1994), who had only considered volatility as a deterministic, as opposed to stochastic, process. The advantage of model-free implied volatility is its general nature because it is neither based on a deterministic volatility process nor an assumption of constant volatility; thus, it does not require other option-pricing models, other than the option price alone.
Jiang and Tian (2005) generalized model-free volatility to an asset price process with jumps to examine the volatility forecasting capabilities of model-free implied volatility, Black-Scholes implied volatility and historical volatility, and found that model-free implied volatility performed best for the Standard & Poor’s 500 index. In contrast, from an examination of individual stocks between January 1996 and December 1999, Taylor, Yadav and Zhang (2006) found that model-free implied volatility contained less volatility information than Black-Scholes implied volatility.
In this paper, we first extend the model-free implied volatility models of Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) to asset prices and volatility with jumps, as proposed by Duan, Ritchken and Sun (2006). We then compare the forecasting abilities for different volatility measures, including model-free implied volatility, Black-Scholes implied volatility, conditional volatility provided by the GJR model, and historical volatility, as measured by high-frequency intraday data for individual options, using the underlying assets of 304 US firms during the period from 4 January 1999 to 31 December 2004.
We also extend the curve-fitting method of Taylor et al. (2006) to consider the no-arbitrage condition on the construction of the volatility curve. Our examination includes more than double the amount of the Taylor et al. (2006) sample, covering a sample period which is also longer. Furthermore, we adopt high-frequency data to calculate realized volatility as our historical volatility proxy. The advantage of high-frequency data is that it could hold greater information content than daily data for the estimation of true volatility, whilst it is also unconditional volatility, which means it is not based on specific volatility models, such as the time-series or stochastic volatility models.
Our empirical results show that realized volatility, as measured by five-minute intraday returns, outperforms other volatility measures for one-day-ahead estimation in ARCH, including the conditional volatility under GJR, model-free implied volatility and Black-Scholes implied volatility. However, we find that when the forecast horizon is extended until the expiration date in the OLS regression, Black-Scholes at-the-money implied volatility has superior forecasting ability across our sample firms.
The remainder of this article proceeds as follows. Section 2 derives the model-free implied volatility formula under the Merton (1979) and GARCH jump processes, followed in Section 3 by a description of the volatility construction and the data adopted for this study. Section 4 presents the empirical methodology and results. The final section summarizes the conclusions drawn from our analyses. 
2
Model-Free Implied Volatility
2.1 
Model-Free Implied Volatility with Jumps in the Underlying Asset Returns 
Britten-Jones and Neuberger (2000) derived model-free implied volatility under the assumption of diffusion. Assume that the dynamic process of the underlying stock price is:
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where volatility, σt , is a function of time and other parameters; dZt is a Wiener process; and St is the underlying stock price at time t. Let T be a given maturity and a set of options with a continuum of strikes K ≥ 0 and a continuum of maturities t ≥ 0 and prices CS (T, K). Under a risk-neutral assumption, we can obtain:
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In this section, we first of all take into consideration jumps in the underlying asset returns and consider a continuous trading economy with trading interval [0, T]. Assume that the dynamic process of the underlying stock price is:
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The jump size Yt is log-normally distributed with parameters μ and δ , and a Poisson process {Nt : t ∈[0, T]} with intensity λ.
Under this situation, the expected value of implied volatility is:
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where k = E[Yt – 1].
In order to obtain implied volatility with a jump framework, we define a stock process with a different volatility term, as follows: 
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where 
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 and Nt is a Poisson with mean λt , when the variance in the number of jumps is given as constant. μ and k are the parameters of Yt. Given the number of jumps, n , the process StBN is as described in Equation (1); thus we can use the method referred to above to calculate implied volatility under the jump process.
Proposition 1: 
The expected value of squared returns between time 0 and date T under the jump process is as follows:
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where
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and 
[image: image9.wmf](

)

(

)

T

n

k

t

B

t

n

2

2

2

2

+

+

=

d

s

s

 and CBn (T, K) represent a set of option prices when given the number of jumps, n.
2.2 
Model-Free Implied Volatility with Jumps in Returns and Volatility
It is found within the literature that jumps can occur in both asset returns and volatility. In this section, we use the NGARCH(1,1) jump framework referred to in Duan, et al. (2005) to calculate implied volatility. Assume that:
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where 
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, Xt(0) are N(0,1), and for j = 1,2,…., Xt( j) is N(μ, γ2). Nt is distributed as a Poisson random variable with λ. The asset price St is assumed to follow:
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where 
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The local variance of the logarithmic returns from date t, viewed from date t – 1, is: 
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where 
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where β0 is positive, and β1, β2 are non-negative to ensure that the local scaling process is positive. Assume that the single-period continuously compounded interest rate is constant, say r. Thus the following restrictions must hold:
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Define a new measure Q by:
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Then:
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where
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Nt has a Poisson distribution with 
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Above all, we consider the NGARCH(1,1)-Normal model. For consistency with the conditions in Britten-Jones and Neuberger (2000), we set r = 0. The following Lemma 2.2.1 and Proposition 2 can be obtained under these assumptions, and we can prove Proposition 2 by a similar transformation in section 2.1.
Lemma 2.2.1: 
If there is no jump, and r = 0, the NGARCH(1,1) model can be expressed as: 
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where 
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Proposition 2: 
The expected value of the squared returns between time 0 and date T under the NGARCH(1,1) model is:
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where CG (T, K) are a set of option prices under the NGARCH(1,1)-Normal model.
3.
Data and Volatility Calculation
3.1 
Model-Free Implied Volatility Formula
As noted earlier, Britten-Jones and Neuberger (2000) derived model-free implied volatility under the assumption of diffusion; thus, the risk-neutral expectation of the underlying variance can be replaced as:
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where F0,T  is the underlying forward price and P(K,T) and C(K,T) denote the put and call option prices with strike price K. Equation (1) indicates that the variance expectation can display the form of integration of all out-of-the-money option prices weighted by the square strikes. The new volatility index, VIX, is a typical application of model-free implied volatility which was launched by the CBOE in September 2003 and is calculated, based upon the following formula, using S&P 500 index options:
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where T is time to expiry;, r is the risk-free interest to expiry; K0 is the strike price used to determine Q(Ki, T ) which is the call or put option price; Q(Ki, T ) is the call price with strike Ki if Ki ≥ K0 , otherwise it is the put price; and ∆Ki is the interval between the strike prices, defined as 
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 F0,T  is the forward index level derived form index prices, and K0 is the first strike below F0,T in the definition of VIX. 
In this study, however, we use Equation (20) to calculate model-free implied volatility by approximating that the underlying strike price Ki is continuous; therefore, we ignore the final term of Equation (20) by setting K0 = F0,T when calculating model-free implied volatility.
3.2 
Implementations of model-free implied volatility
In this paper, we require as many out-of-the-money option prices as possible so that we can estimate the model free volatility expectations in Equation (19). In practice, there are no adequate stock options available to us to directly calculate model-free implied volatility; hence, we apply the implementation method proposed by Taylor et al. (2006) to calculate the model-free volatility expectations. Their method of volatility curve fitting is based on Malz (1997), who noted that the ‘volatility smile’ could be described as a quadratic function from an option’s delta, as opposed to being taken directly from the exercise price (Shimko, 1993). The quadratic volatility function is as follows:
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where the constant, φatm , provides the basis of this volatility curve, φrr is the coefficient indicating the skew of this volatility curve, and the second power coefficient, φstr , shows the degree of curvature for this volatility curve.

Model-free implied volatility is assumed in a risk-neutral measure, where delta ∆i is defined as the first derivative of the Black-Scholes call option price with respect to the underlying forward price:
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with  
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Here, σ* is defined as the implied volatility with the strike price nearest to the forward price, F0,T . Taylor et al. (2006) proposed the estimation of the three parameters of the volatility quadratic function (φatm , φrr and φstr) by minimizing the following function:
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where N is the number of observed strike prices that may be used to calculate delta, ∆i , as given by Equation (22), wi = ∆i (1 – ∆i), with its purpose being to reduce the impact of the out-of-the-money options. σi denotes the observed implied volatility which corresponds to the strike price Ki and 
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(∆i: φatm , φrr, φstr) is the Malz (1997) volatility quadratic function outlined in Equation (21).
A minimum of three different available option strike prices are required to estimate the parameters of the quadratic volatility function by minimizing Equation (23). The constraints are placed so that the volatility curve is always positive.
 We also consider the no-arbitrage condition where the out-of-the-money call (put) price decreases as the strike price increases (decreases). Afterwards, we divide the 1,000 parts equally, covering the range from 0 to e – rT , then find the corresponding volatility on the volatility quadratic function. Finally, we fit and obtain the one-to-one mapping strike price from the inverse function of the strike price in Equation (22).

We can now calculate the out-of-the-money option price, which is required in Equation (20), using the Black-Scholes option pricing formula. We continuously add F0,T x 0.01 to the maximum strike price until the lowest put price is less than 0.001 cents, and also extend the minimum strike price by the same increment (F0,T x 0.01), until the lowest call price is greater than 0.001 cents. The extrapolation method is used to eliminate the truncated error caused by the integral beyond the strike price range between the minimum and the maximum strike prices, and assume that the extended implied volatilities are equal to the appropriate end-point volatility of the quadratic function.
3.3 
Data Descriptions
The option data used in this study is obtained from the Ivy database of OptionMetrics, whilst the high-frequency stock price data is from the Trade and Quote (TAQ) database. Our sample period runs from 4 January 1999 to 31 December 2004 and includes 1,508 trading days. We use the CUSIP code to match the firms in the Ivy and TAQ databases.
The implied volatilities used to construct the volatility curves are obtained from the Ivy database the implied volatility provided by this database considers both dividend and option exercised types, setting the theoretical option price equal to the midpoint of the best closing bid price and the best closing offer price, and then backing out the implied volatility from the Black-Scholes formula if the option is European, or the Cox-Ross-Rubinstein binomial tree model if the option is American. When constructing a volatility curve, each of the implied volatilities within the same trading day must map to a strike price to calculate the corresponding delta. If it is available for both call and put options, the average value of the two implied volatilities is used.
The forward price F0,T , which is required for the calculation of model-free implied volatility, is the future value of the spot price reduced by the present value of all dividends prior to the maturity time, T, as follows:
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where S0 is the underlying spot price, S0,i is the ith dividend whose ex-date is in the interval [0, T]. Both the spot price and dividend distribution are included in the Ivy database. The sign r, which denotes the risk-free interest rate corresponding to the expiry of each option, is obtained by linearly interpolating between the two closed zero-curve rates on the zero curve file provided by the Ivy database, with each dividend discount factor being similarly obtained. Details of the data filters provided by the Ivy and TAQ databases are described in the following sub-sections.

3.4 
Construction of Model-free and Black-Scholes Implied Volatility
Stock options usually have quotes with maturities within the marketplace of 30 days, 60 days, 120 days and 180 days. In any cases where the options either have less than eight days to maturity, or they have missing values on implied volatility, they are excluded from the sample because the former may cause liquidity and market microstructure problems, whilst the latter cannot be used to construct the volatility curve.
We know from the foregoing section that a minimum of three strike prices and their corresponding implied volatility levels are required to construct the volatility curve. Thus, the data are selected for a certain day during our sample period if there are at least three available strike prices with the nearest maturity. If there are less than three available strikes with the nearest maturity, we switch to the second nearest. If there are less than three available strike prices with both the two nearest maturities, we treat our model-free and Black-Scholes implied volatility estimates as missing values for that particular day, and assume that both model-free and Black-Scholes missing values are unchanged from the previous trading day.

Following the previously mentioned rule, we searched through the Ivy database for all of the firms in the NYSE, NASDAQ and AMEX from 4 January 1999 to 31 December 2004. Firms must be included for the whole sample period, and any missing values for any firm must be less than 2 per cent. We continued to find the intraday transaction prices from the TAQ database on a total of 481 firms which met these criteria. The transaction price data must also cover the entire sample period, with active trades on the same exchange, and with less than 2 per cent missing data.
 We were ultimately left with a total of 304 firms for analysis in this study.
Model-free implied volatility is calculated for each day using the method described in Section 2.2, whilst Black-Scholes implied volatility is defined as that provided by the Ivy database with the closest strike price to the forward price, F0,T . The explanatory variables, σMF and σBS , for the ARCH specifications denote the respective daily calculation of model-free and Black-Scholes implied volatility; however, within the OLS regression, they represent the monthly non-overlapping forecasts.
 We extract the monthly non-overlapping forecasts from the model-free and Black-Scholes daily series when the trading days of the options follow a previous maturity date; in other words, the explanatory variables used in the ARCH specifications are one-day-ahead estimations which are used in the OLS regression employing a forecast horizon equal to the time to maturity of the option. There are a total of 1,508 observations for the daily volatility variables for the 304 firms, and a maximum of 71 observations for the monthly non-overlapping variables.

Figure 1 plots the daily model-free and Black-Scholes implied volatility time series for Microsoft during our sample period. The two series have approximately the same tendencies, although Black-Scholes volatility tends to be lower than model-free volatility because it responds only to the behavior of near-the-money options, whereas model-free volatility responds to the volatility of all out-of-the-money options.
<Figure 1 is inserted about here>

3.5 
Construction of Realized Volatility
Unlike stock returns, volatility is a latent variable. The general measure for realized volatility is the standard deviation over the relevant return horizon, but this measure is restricted to calculating daily volatility when using daily returns. Therefore, we also use high-frequency data to estimate the true latent volatility by summing the intraday squared returns, the advantage of which is that it has more information content than daily data.
An important issue for high-frequency data is the microstructure noise that is always present; and indeed, the higher the frequency, the more noise it contains. Aït-Sahalia, Mykland and Zhang (2005) demonstrated that the selection of an optimal sampling interval for calculating realized volatility is dependent upon the amount of microstructure noise relative to the volatility horizon; in other words, if a longer volatility horizon is adopted for analysis, such as monthly volatility, then a longer sampling interval should be selected, other than daily volatility. Hence, we select 30-minute individual stock returns to calculate the monthly realized volatility and five-minute individual stock returns to calculate the daily realized volatility. This setting is consistent with Jiang and Tian (2005) for index volatility.
Andersen et al. (2001) calculated daily realized volatility by using five-minute returns on 30 DJIA firms; we employ their empirical method in this study to calculate our daily realized volatility estimates. We extract five-minute transaction prices for the target firms selected from the TAQ database for our calculation of implied volatility over the period from 9:30 EST to 16:05 EST for every trading day; the transaction record exchange must be consistent with the option record exchange.
 The five-minute prices are taken at, or immediately prior to, the five-minute ticks, with the exception of the first price, where we use the price at 9:30 EST or immediately thereafter. Each trading day provides a total of 80 five-minute prices which we can use to obtain 79 logarithmic difference returns. In order to ensure our stocks are sufficiently liquid to extract the five-minute transaction prices, the selected stocks must have at least 158 trades per day at the start (4 January 1999), the midpoint (2 January 2002) and the end (31 December 2004) of our sample period.
The 30-minute returns are similarly constructed, and we also extract 10-minute, 15-minute, and 20-minute intraday returns all of which span the period from 9:30 EST to 16:05 EST. Table 1 presents the summary distributions of the intraday returns for the different time intervals. Although none of the intraday returns in Panel A are significantly from zero, they are, nevertheless, extremely leptokurtic, whilst their skewness is also close to zero. Panel B provides their first to third order autocorrelations, which are low and decreasing with a rise in the time intervals; this implies that the longer the diminution of the time interval, the greater the microstructure noise.
<Table 1 is inserted about here>

Following construction of the intraday returns, the annualized realized volatility is measured using the following equation:
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where ri denotes the intraday stock return, τ is the volatility relevant horizon, and n is the number of intraday returns from t to T.
An alternative measure for annualized realized volatility based on the standard deviation of the daily returns is:
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where ri is the stock daily return and 
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 is the average return during period τ.
The explanatory variable σLRE for the ARCH specifications, and the OLS regression analysis in the next section, denotes the lagged daily realized volatility, which is the realized volatility at time t – 1 calculated for five-minute returns using Equation (25). Since it contains the nearest information for forecasting future volatility, following Jiang and Tian (2005), we adopt this as the historical volatility proxy assuming that the volatility process is a Markov process. The 
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 in the OLS regression represent the monthly realized volatility levels measured by Equation (25) for 30-minute returns, and Equation (26) for the daily returns provided by the Ivy database.
Table 2 reports the summary statistics of the realized volatility levels calculated by the different time interval returns. The distinction between Panels A and B is the volatility horizon. Volatility in Panel A is daily volatility calculated by Equation (25), whereas Panel B provides the monthly estimates by summing the daily volatility levels during the corresponding option maturity period; both are annualized values. The distribution for the different time intervals is similar, with the same tendencies for both the daily and monthly results, both of which decrease as the time interval increases. This result implies that a shorter time interval contains more information and more microstructure noise.
<Table 2 is inserted about here>

Table 3 provides the cross-sectional correlation matrices of daily and monthly realized volatility for the different time intervals. We can see that the correlations are high for both periods, but that the daily correlation is lower for different time intervals. This implies that the daily realized volatility estimation is more easily influenced by the time intervals. Therefore, the analysis of the ARCH specifications in the next section also reports the results for the different (5-, 10-, 15-, 20- and 30-minute) time intervals.
<Table 3 is inserted about here>

4.
Empirical Methodology and Results
4.1 
Descriptive Statistics
The summary statistics for all of the variables used in the ARCH specifications and regressions are reported in Table 4. Panel A provides the summary statistics for daily model-free implied volatility, daily at-the-money Black-Scholes implied volatility, and the difference between model-free and Black-Scholes implied volatility levels; these daily estimates are used in the ARCH specification. Panel B presents the summary statistics for the monthly non-overlapping variables used within the OLS regression analysis, comprising of the two types of realized volatility estimates, model-free implied volatility, σMF, and Black-Scholes implied volatility, σBS , as well as lagged realized volatility σLRE.
<Table 4 is inserted about here>

As Table 4 shows, model-free implied volatility is higher than Black-Scholes implied volatility in both the daily and monthly measures. The realized volatility in Panel B, which uses intraday returns, is lower than that for daily returns, essentially because we ignore the overnight effect when estimating realized volatility. Both Black-Scholes and model-free implied volatility levels are greater than those for realized volatility, which is known to be a downwardly biased measure of risk-neutral expected variance for Black-Scholes implied volatility, and a positive bias, according to Jensen’s inequality, for model-free implied volatility, which is specified as:
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Table 5 presents the cross-sectional mean and median values of the correlation matrices across the sample firms, which are calculated using monthly non-overlapping volatility. We can see that for both measurements of realized volatility, Black-Scholes implied volatility has the highest correlation, whilst lagged realized volatility has the lowest, irrespective of the statistics, mean or median. The highest overall correlation is between model-free and Black-Scholes implied volatility.
<Table 5 is inserted about here>

4.2 
ARCH Specifications
4.2.1  Model description
The model is combined with the models of Glosten, Jagannathan and Runkle (1993), Blair et al. (2001) and Taylor et al. (2006). The general specification is:

[image: image54.wmf](

)

1

1/2

222

22

,1,1,1

111

,

,~...0,1,

.

1111

ttt

tttt

MFtBStREt

ttt

t

r

hzziidN

s

h

LLLL

gdl

meqe

e

gsdsls

waeae

bbbb

-

-

---

---

=++

=

++

=+++

----

      (27)
where the daily stock return, rt , is modeled by the conditional mean, μ, the residuals, (t, and the previous residuals, (t – 1 , with coefficient θ. The standard residuals, zt , are assumed to follow standard normal distribution. L is the lag operator which captures the autocorrelation of the conditional variance, ht. The conditional variance is described as four different explanations of volatility:
1.
The GJR(1,1) model in Glosten et al. (1993) places restrictions on 
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where st – 1 is a dummy variable which takes the value of 1 if (t – 1 < 0; otherwise 0.
2.
The volatility model explaining only model-free volatility alone places restrictions on 
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where σMF, t – 1 is daily model-free implied volatility for period t – 1, obtained by dividing the annualized volatility values by 
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3.
The volatility model explaining only Black-Scholes volatility places restrictions on 
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where σBS, t – 1 is daily Black-Scholes implied volatility for period t – 1, obtained by dividing the annualized volatility values by 
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4.
The volatility model explaining lagged realized volatility alone places restrictions on 
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where lagged realized volatility, σLRE, t – 1 is daily realized volatility for period t – 1.
4.2.2  Parameter estimation
The parameters are estimated by maximizing the quasi-log-likelihood function:
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with  
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where 
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 presents the set of parameters in the ARCH specifications. 

This method of estimation assumes that the standardized returns, zt , follow standard normal distribution, and we set restrictions on the parameters to guarantee positive conditional variances.
 Tables 6 and 7 present the summary statistics of the parameter estimates from the four ARCH specifications defined in Equation (27). Panel A in Table 6 provides the estimates for GJR(1,1)-MA(1) model, with Panels B and C providing the respective values estimated by model-free and Black-Scholes implied volatility. Table 7 provides the values estimated by the realized volatility from the different time interval returns.

<Tables 6 and 7 are inserted about here>

The first model is the GJR model which uses α and α_ to describe conditional volatility as asymmetry for the respective positive and negative residuals. The estimates of α and α_ are not significantly different from zero at the 5 per cent level for the mass of firms, probably because the asymmetric volatility model cannot describe volatility well. The median of the volatility persistence parameter α + 0.5α– + β is 0.996.
The second model uses only the information provided by the model-free implied volatility time series. We use one-day-ahead model-free volatility, σMF, t – 1, to calculate the conditional variances. For half of the firms, the estimates of γ are between 0.55 and 0.71, with 67.7 per cent of all firms having estimates of γ which are significantly different from zero at the 5 per cent level. In contrast, only 29.9 per cent of firms have estimates of βγ which are significantly different from zero at the same level. This suggests that the conditional variance calculated from model-free implied volatility is provided mainly by σMF, t – 1 with only limited information being provided by older implied volatility.
The third model uses only the information contained in the Black-Scholes implied volatility time series, σBS, t – 1, to calculate the conditional variances. For half of the firms, the estimates of δ are between 0.6 and 0.9, 71 per cent of the estimates of δ being significantly different from zero at the 5 per cent level. Generally speaking, δ exceeds γ , and βδ is less than βγ .
The fourth model uses only lagged realized volatility with the five different time interval returns (5-minute, 10-minute, 15-minute, 20-minute and 30-minute). With an increase in the time interval, λ tends to increase and βλ tends to decrease. Around 70 per cent of the estimates of λ are significantly different from zero at the 5 per cent level for each time interval, although with an increase in the time intervals, the figures for βλ which are significantly different from zero at the 5 per cent level also tend to increase.
The weights of the conditional variance for the second, third and fourth models are respectively defined by 
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 is the lowest for the majority of the sample firms in Tables 6 and 7.
Figures 2a-c illustrate the respective relationships between 
[image: image75.wmf]1

g

g

b

-

 and 
[image: image76.wmf]1

d

d

b

-

 (Figure 2a), between 
[image: image77.wmf]1

g

g

b

-

 and 
[image: image78.wmf]1

l

l

b

-

 (Figure 2b), and between 
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 (Figure 2c) for the 304 firms in our sample. The scatter diagram slants towards the Black-Scholes axis in Figure 2a, with only one point appearing above the 45-degree line. The scatter diagram slants towards the realized volatility axis for 268 of the firms in Figure 2b. Finally, there are 208 firms with larger value weights for realized volatility in Figure 2c. These results imply that of all the volatility estimates, lagged realized volatility contains the most information.
<Figures 2a-c are inserted about here>

4.2.3  Model fitting
Here we use the log-likelihood function values to judge the performance of each model. A higher log-likelihood value indicates higher responsibility in model fitting. The first block of rows in Panel A of Table 8 show the percentage of the log-likelihood values across all of the firms. The percentages for each row show how many of the firms are included in the six probable outcomes. First of all, we decide which explanatory variable will be our historical volatility. Although the log-likelihood values for lagged realized volatility are close for each time interval, 35.5 per cent of the firms have the highest log-likelihood values for five-minute intervals, 21.1 per cent have the highest values for 10-minute intervals, 17.4 per cent for 15-minute intervals, 11.5 per cent for 20-minute intervals and 14.5 per cent for 30-minute intervals. We therefore take five-minute realized volatility to represent lagged realized volatility. 
<Table 8 is inserted about here>

We then compare the performance of this lagged realized volatility with the conditional volatility under the GJR model, and find that 88.5 per cent of the firms have larger log-likelihood values in the lagged realized volatility model. Thus, we use lagged realized volatility as our explanatory variable for historical volatility. LLRE , LMF and LBS denote the respective log-likelihood values for the five-minute lagged realized volatility, model-free implied volatility and Black-Scholes implied volatility models.
More than half of the firms have a lagged realized volatility log-likelihood value, LLRE , which is higher than the values for both model-free LMF and Black-Scholes LBS  volatility, whilst only 14.8 per cent have the highest LMF value and 31.3 per cent have the highest LBS value. This suggests that lagged realized volatility calculated under five-minute returns is the superior estimate for volatility prediction.
4.3 
OLS Regressions
4.3.1  Model description 
Following Canina and Figlewski (1993), Christensen and Prabhala (1998), Jiang and Tian (2005) and Taylor et al. (2006), we apply univariate and encompassing regressions to examine the information content of the different explanatory variables. While the univariate regressions are used here to judge the model explanations provided by the single volatility explanatory variable, we also use them to compare the forecasting abilities with different individual explanatory variables. The encompassing regression addresses the relative importance of competing expectation variables and implies the marginal contribution made when new expectation variables are included in the model. The regression model is as follows:
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where σRE, t,T is a measure of the monthly realized volatility from time t to time T. lagged realized volatility σLRE, t,T is our explanatory variable for historical volatility, σMF, t,T is non-overlapping model-free implied volatility and σBS, t,T is non-overlapping Black-Scholes implied volatility. All of the variables here are annualized values.
4.3.2  Parameter estimation and performance 
Table 9 presents the summary statistics for the parameter estimates, adjusted R2, mean square errors (MSE) and Durbin-Watson statistics across the 304 firms. The first part of Panel A is the univariate regression with explanatory variable, 
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, which is measured by 30-minute intraday returns. Almost all of the estimates for the firms βLRE , βMF and βBS are significantly different from zero, with respective medians of 0.50, 0.78 and 0.86. The Black-Scholes implied volatility value has the highest median (0.55) for adjusted R2, whilst the value for model-free implied volatility is slightly lower (0.53) and the lagged realized volatility value is only 0.39. This evidence indicates that the Black-Scholes implied volatility model contains more information than the one-day- ahead estimation of realized volatility.
<Table 9 is inserted about here>

We continue our discussion of the encompassing regression with two different variables in Panel A. When the lagged realized volatility variable, σLRE,t,T , is added into the univariate model of model-free and Black-Scholes implied volatility, both models have a 5 per cent rise in responsibility. For the majority of firms, the coefficients are both significantly different from zero. However, when the bivariate regression model simultaneously includes σMF,t,T  and σBS,t,T , only 15.8 per cent of firms have a βMF which is significantly different from zero, whilst the increments in adjusted R2 from the univariate model with σMF,t,T and the univariate model with σBS,t,T  are both small. This result can be explained by the high correlation between model-free implied volatility and Black-Scholes implied volatility in Table 3.
The last model includes all three of these explanatory variables, σLRE,t,T , σMF,t,T  and σBS,t,T . The median of adjusted R2 is 0.6 and there are only 38 firms with the incept βMF significantly different from zero, and 118 firms where the incept βBS is significantly different form zero. This could be due to the two implied volatility measures containing similar information. The respective medians of βLRE , βMF and βBS are 0.19, 0.12 and 0.47, which suggests that Black-Scholes implied volatility is the most informative measure.
The explanatory variable in Panel B of Table 9 is monthly non-overlapping realized volatility, 
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, measured by daily returns. The result is similar to that for Panel A, but the adjusted R2 values are all less than in Panel A, as are the number of firms that are significantly different from zero. This result is produced by the lower correlation between 
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 and the other variables. Most of the Durbin-Watson statistics are not small enough to reject the null hypothesis that the regression residuals are correlated. We can therefore assume that there is no autocorrelation problem in our analysis.
Panel B of Table 9 presents details of the performance of each variable in the univariate regression with explanatory variable, 
[image: image85.wmf](1)

RE

s

. The results indicate that Black-Scholes implied volatility is the best estimator for 61.8 per cent of our sample firms with regard to the forecasting of monthly realized volatility for the horizon relevant to the life of the option. We also change the volatility variables to their logarithms and their variances, and find that the performance for each explanatory variable under the variance and logarithm regression models is similar to the results reported in Table 8. Black-Scholes implied volatility remains the best estimator for 63.8 per cent of the 304 firms in our sample when the volatility variables are changed to their logarithm and for 59.2 per cent of the firms when the volatility variables are replaced by their variances. The results are explained further in Appendix B.
4.4 
Comparisons of Performance
4.4.1 Comparison of groups defined by average available strike prices
We have already determined that σLRE performs best in the one-day-ahead estimations and that σBS performs best in the monthly volatility forecasts, and we now go on to consider whether or not the performance remains the same for the different groups. Figure 3 shows the average available strikes for the 304 firms, with the average strike numbers for most of the firms being between 4 and 6. With more available strikes, the option prices are possibly more efficient so that model-free and Black-Scholes implied volatility should perform better than lagged realized volatility.
<Figure 3 is inserted about here>

Hence, we divide the sample firms into three groups by the average number of available strike prices, 
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. Group 1 (n = 40) includes those firms with 
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 between 3 and 4, Group 2 (n = 101) includes those firms with 
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 between 4 and 5, and Group 3 (n = 163) includes those firms with 
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 higher than 5. The results are shown in the second, third and fourth columns of Table 8. After dividing the firms into these three groups, we find from Panel A that the best performance for lagged realized volatility falls from 85 per cent to 40 per cent, whilst the best performance for model-free implied volatility increases from 5 per cent to 18 per cent and the best performance for Black-Sholes implied volatility increases from 10 per cent to 42 per cent. 
The null hypothesis that there is no relationship between the ARCH model performance and these three groups is rejected by a 3×3 contingency table test at the 5 per cent significance level, with a χ2 value of 33.26. Similar tendencies after grouping are shown for adjusted R2 in Panel B. The contingency table test with a χ2 value of 27.29 also tells us that the tendencies are significant.
4.4.2 Comparison of groups defined by intermediate delta options 
In the Malz (1997) study, the 0.25-, 0.5- and 0.75-delat options anchor the volatility curve and the relationship between the three parameters of quadratic volatility. If the option delta is outside the range of 0.15 to 0.85, the price could be biased, so we use the number of intermediate delta options to group our firms. The 304 firms are divided into three groups by their average number of delta values within the interval [0.15, 0.85], denoted by 
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 between 1 and 2. Group 2 (n = 137) includes the firms with 
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 between 2 and 3. Group 3 (n = 82) includes the firms with 
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 higher than 3. The results are presented in the last three columns of Table 9. The tendencies for the log-likelihood values of the three models are similar to the tendencies under the groups by strikes. The χ2 value is 64.81, which indicates that the tendencies are more distinguishable. Although the χ2 statistic is statistically significant (28.16) in Panel B, there is no increase in adjusted R2 for model-free implied volatility. This indicates that the number of intermediate deltas cannot be the main reason explaining the adjusted R2 of model-free implied volatility being lower than that for Black-Scholes implied volatility for the majority of our sample firms.
5. Conclusions
In this paper, we first generalize the model-free implied volatility model derived by Jiang and Tian (2005), and then use individual stock options data to compare the forecasting performance under various volatility measures. We find that realized volatility, measured by five-minute intraday returns, outperforms GJR conditional volatility and the other two implied volatility measures for one-day-ahead estimations. In addition, the ARCH model indirectly indicates that five-minute returns are the optimal frequency for calculating realized volatility. However, realized volatility becomes a bad estimator for the prediction of monthly volatility during the option maturity time. We find that Black-Scholes implied volatility, at-the-money, has the highest effect across our firms. In the regression analysis, Black-Scholes implied volatility has more information for more than 60 per cent of our sample firms.
Theoretically, model-free implied volatility should be a better estimate than Black-Scholes implied volatility; indeed, Jiang and Tian (2005) reported that the former contained the most information content. Carr and Wu (2006), however, found that the new VIX could predict movements in future realized volatility and that it contained all of the information of GARCH volatility models. Taylor et al. (2006) nevertheless demonstrated that Black-Scholes implied volatility performed best for monthly volatility forecasting, which is similar to our results.
The forecasting ability of model-free implied volatility is weaker than that of Black-Schloes implied volatility for individual stocks regardless of the prediction horizons, which leads to the following conclusions. Firstly, the rare available strike prices for individual stocks could easily induce fitting error. Secondly, the volatility curve fitting method could be biased (we discuss this issue in Appendix C). Thirdly, the option market for individual stocks is not informationally efficient because of illiquid trading. Finally, model-free implied volatility extracts the exact error information from out-the-money options, despite the fact that they are mispriced.
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Figure 1  Model-free and Black-Scholes implied volatility time series plots for Microsoft
Note: * The figure illustrates the time series plots of daily model-free implied volatility and daily Black- Scholes implied volatility for Microsoft during the period from 4 January 1999 to 31 December 2004.
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Figure 2a  Comparison of estimated weight values of model-free and Black-Scholes volatility for the sample firms

Note: * Model-free and Black-Scholes volatility are estimated by the ARCH specification models using the information provided by model-free implied volatility only, and Black-Scholes implied volatility only. The straight line is the 45-degree line.
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Figure 2b  Comparison of estimated weight values of model-free and realized volatility for the sample firms

Note: * Model-free and realized volatility are estimated by the ARCH specification models using information provided by model-free implied volatility only, and five-minute realized volatility only. The straight line is the 45-degree line.
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Figure 2c  Comparison of estimated weight values of realized and Black-Scholes volatility for the sample firms

Note: * Realized and Black-Scholes volatility are estimated by the ARCH specification models using the information provided by five-minute realized volatility only, and Black-Scholes implied volatility only. The straight line is the 45-degree line.
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Figure 3  Average number of available daily strike prices for the sample firms

Table 1 
Summary descriptive statistics on the distribution of intraday returns, by different time intervals
	Statistics
	Return Intervals

	
	5-minute
	10-minute
	15-minute
	20-minute
	30-minute

	Panel A:  Distribution of intraday returns

	Mean (x105)
	
	
	
	
	

	Mean
	0.137
	0.110
	0.165
	–0.531
	0.330

	Median
	0.270
	0.280
	0.420
	–0.058
	0.839

	Lower quartile
	–0.236
	–0.974
	–1.461
	–3.054
	–2.923

	Upper quartile
	0.819
	1.499
	2.249
	2.529
	4.498

	Standard Deviation
	
	
	
	
	

	Mean
	0.003
	0.004
	0.005
	0.006
	0.007

	Median
	0.002
	0.003
	0.004
	0.005
	0.006

	Lower quartile
	0.002
	0.003
	0.004
	0.004
	0.005

	Upper quartile
	0.004
	0.005
	0.006
	0.007
	0.008

	Skewness
	
	
	
	
	

	Mean
	0.065
	0.062
	0.036
	0.017
	0.000

	Median
	0.055
	0.099
	0.086
	0.083
	0.080

	Lower quartile
	–0.030
	–0.053
	–0.061
	–0.072
	-0.094

	Upper quartile
	0.167
	0.208
	0.214
	0.209
	0.207

	Kurtosis
	
	
	
	
	

	Mean
	25.256
	22.313
	19.286
	19.460
	17.227

	Median
	19.485
	15.428
	14.393
	13.330
	12.278

	Lower quartile
	13.852
	11.960
	11.092
	10.927
	10.184

	Upper quartile
	33.102
	23.336
	19.177
	19.311
	17.586

	Panel B:  Autocorrelation of intraday returns

	First-order autocorrelation
	
	
	
	
	

	Minimum
	–0.183
	–0.170
	–0.168
	–0.172
	–0.159

	Lower quartile
	–0.087
	–0.059
	–0.043
	–0.034
	–0.026

	Median
	–0.036
	–0.028
	–0.020
	–0.009
	–0.003

	Upper quartile
	0.002
	0.000
	0.001
	0.014
	0.017

	Maximum
	0.063
	0.053
	0.068
	0.075
	0.082

	Second-order autocorrelation
	
	
	
	
	

	Minimum
	–0.060
	–0.041
	–0.042
	–0.040
	–0.038

	Lower quartile
	–0.016
	–0.010
	–0.004
	–0.004
	–0.006

	Median
	–0.006
	0.000
	0.005
	0.005
	0.001

	Upper quartile
	0.001
	0.008
	0.014
	0.013
	0.010

	Maximum
	0.020
	0.032
	0.037
	0.083
	0.078

	Third-order autocorrelation
	
	
	
	
	

	Minimum
	–0.033
	–0.022
	–0.024
	–0.031
	–0.033

	Lower quartile
	–0.007
	0.000
	–0.005
	–0.007
	–0.010

	Median
	–0.001
	0.005
	0.002
	0.001
	–0.002

	Upper quartile
	0.006
	0.011
	0.009
	0.008
	0.004

	Maximum
	0.019
	0.032
	0.075
	0.032
	0.040


Table 2 
Summary statistics of daily and monthly realized volatility estimates, by different time intervals
	Statistics
	Five-minute Realized Volatility Returns
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	Panel A:  Daily realized volatility

	Mean
	
	
	
	
	

	Mean
	0.384
	0.368
	0.360
	0.350
	0.349

	Median
	0.323
	0.313
	0.308
	0.302
	0.301

	Lower quartile
	0.281
	0.271
	0.268
	0.263
	0.260

	Upper quartile
	0.457
	0.436
	0.422
	0.402
	0.399

	Standard Deviation
	
	
	
	
	

	Mean
	0.184
	0.182
	0.184
	0.185
	0.192

	Median
	0.150
	0.151
	0.155
	0.156
	0.160

	Lower quartile
	0.121
	0.124
	0.128
	0.131
	0.136

	Upper quartile
	0.223
	0.217
	0.219
	0.220
	0.228

	Maximum
	
	
	
	
	

	Mean
	1.865
	1.872
	1.896
	1.939
	2.012

	Median
	1.472
	1.513
	1.547
	1.614
	1.677

	Lower quartile
	1.075
	1.127
	1.169
	1.182
	1.245

	Upper quartile
	2.602
	2.416
	2.408
	2.475
	2.436

	Minimum
	
	
	
	
	

	Mean
	0.089
	0.078
	0.071
	0.063
	0.054

	Median
	0.082
	0.072
	0.064
	0.059
	0.049

	Lower quartile
	0.069
	0.060
	0.053
	0.046
	0.039

	Upper quartile
	0.107
	0.093
	0.085
	0.077
	0.066

	Panel B:  Monthly realized volatility

	Mean
	
	
	
	
	

	Mean
	0.402
	0.388
	0.382
	0.373
	0.375

	Median
	0.335
	0.327
	0.326
	0.320
	0.323

	Lower quartile
	0.292
	0.286
	0.283
	0.279
	0.281

	Upper quartile
	0.479
	0.456
	0.444
	0.434
	0.437

	Standard Deviation
	
	
	
	
	

	Mean
	0.145
	0.139
	0.137
	0.135
	0.136

	Median
	0.119
	0.116
	0.115
	0.114
	0.114

	Lower quartile
	0.095
	0.095
	0.095
	0.094
	0.094

	Upper quartile
	0.174
	0.166
	0.164
	0.162
	0.165

	Maximum
	
	
	
	
	

	Mean
	0.821
	0.795
	0.785
	0.777
	0.787

	Median
	0.678
	0.660
	0.654
	0.653
	0.656

	Lower quartile
	0.551
	0.545
	0.539
	0.532
	0.541

	Upper quartile
	0.994
	0.960
	0.954
	0.957
	0.954

	Minimum
	
	
	
	
	

	Mean
	0.186
	0.180
	0.177
	0.172
	0.171

	Median
	0.160
	0.157
	0.156
	0.154
	0.152

	Lower quartile
	0.134
	0.133
	0.132
	0.126
	0.127

	Upper quartile
	0.224
	0.217
	0.213
	0.204
	0.206


Table 3  Summary statistics of the correlation matrices, by different time intervals
	
	Mean
	Med
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	Panel A:  Daily realized volatility
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	0.853
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	0.918
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	0.919
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	Panel B:  Monthly realized volatility
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Table 4  Summary statistics of daily and monthly volatility estimates

	Variables
	Mean
	Median
	Lower  quintile
	Upper  quintile

	Panel A :  Daily implied volatility measures

	Mean
	
	
	
	

	Model-free (A)
	0.492
	0.448
	0.380
	0.581

	Black-Scholes (B)
	0.434
	0.388
	0.326
	0.510

	Difference between A and B
	0.058
	0.053
	0.044
	0.069

	Standard Deviation
	
	
	
	

	Model-free (A)
	0.148
	0.133
	0.107
	0.183

	Black-Scholes (B)
	0.129
	0.115
	0.089
	0.160

	Difference between A and B
	0.049
	0.047
	0.037
	0.057

	Maximum
	
	
	
	

	Model-free (A)
	1.293
	1.127
	0.913
	1.553

	Black-Scholes (B)
	0.980
	0.848
	0.695
	1.178

	Difference between A and B
	0.496
	0.441
	0.335
	0.608

	Minimum
	
	
	
	

	Model-free (A)
	0.234
	0.212
	0.179
	0.281

	Black-Scholes (B)
	0.201
	0.186
	0.149
	0.246

	Difference between A and B
	–0.043
	–0.032
	–0.047
	–0.021

	Panel B :  Monthly non-overlapping volatility estimates

	Mean
	
	
	
	

	Intraday realized volatility
	0.375
	0.323
	0.281
	0.437

	Daily realized volatility
	0.401
	0.352
	0.298
	0.472

	Model-free implied volatility
	0.487
	0.441
	0.374
	0.578

	Black-Scholes implied volatility
	0.437
	0.393
	0.329
	0.516

	Lagged realized volatility
	0.384
	0.322
	0.277
	0.470

	Standard Deviation
	
	
	
	

	Intraday realized volatility
	0.136
	0.114
	0.094
	0.165

	Daily realized volatility
	0.172
	0.149
	0.122
	0.214

	Model-free implied volatility
	0.141
	0.129
	0.099
	0.173

	Black-Scholes implied volatility
	0.126
	0.111
	0.088
	0.155

	Lagged realized volatility
	0.188
	0.154
	0.125
	0.239

	Maximum
	
	
	
	

	Intraday realized volatility
	0.787
	0.656
	0.541
	0.954

	Daily realized volatility
	0.997
	0.867
	0.709
	1.233

	Model-free implied volatility
	0.914
	0.839
	0.664
	1.107

	Black-Scholes implied volatility
	0.777
	0.701
	0.572
	0.938

	Lagged realized volatility
	1.120
	0.923
	0.722
	1.428

	Minimum
	
	
	
	

	Intraday realized volatility
	0.171
	0.152
	0.127
	0.206

	Daily realized volatility
	0.150
	0.140
	0.108
	0.180

	Model-free implied volatility
	0.265
	0.245
	0.203
	0.319

	Black-Scholes implied volatility
	0.234
	0.213
	0.174
	0.285

	Lagged realized volatility
	0.139
	0.125
	0.102
	0.163


Table 5  Summary statistics of the correlation matrices*
	
	Mean
	Median
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Note: * The correlation matrices for each firm are calculated using the monthly non-overlapping volatility levels for realized volatility measured by intraday data,
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Table 6
Summary statistics of ARCH parameter estimates across the sample firms for the GJR(1,1)-MA(1) model, and model-free and Black-Scholes implied volatility a
	Variables
	Median
	Lower quintile
	Upper quintile
	Significance b 

	
	
	
	
	5 per cent (%)
	10 per cent (%)

	Panel A:  Estimates of GJR(1,1)-MA(1) model

	μx103
	0.613
	0.335
	0.938
	12.17
	24.67

	θ
	–0.010
	–0.046
	0.019
	16.12
	26.64

	ωx105
	0.524
	0.164
	1.910
	11.84
	22.37

	α
	0.024
	0.012
	0.051
	25.33
	37.83

	α–
	0.063
	0.036
	0.101
	42.11
	57.57

	β
	0.936
	0.881
	0.957
	93.42
	93.42

	α + 0.5α– + β
	0.996
	0.981
	0.999
	–
	–

	Log-LLF
	3562.661
	3141.519
	3830.701
	–
	–

	Panel B:  Estimates of ARCH specification using model-free volatility only

	μx103
	0.513
	0.246
	0.790
	7.57
	13.82

	θ
	–0.008
	–0.038
	0.023
	16.45
	24.01

	ωx105
	0.000
	0.000
	0.199
	5.59
	7.24

	γ
	0.554
	0.304
	0.714
	67.76
	76.32

	βγ
	0.114
	0.000
	0.516
	29.93
	32.24
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	0.704
	0.625
	0.775
	–
	–

	Log-LLF
	3580.954
	3163.395
	3827.611
	–
	–

	Panel C:  Estimates of ARCH specification using B-S volatility only

	μx103
	0.519
	0.276
	0.785
	7.57
	13.82

	θ
	–0.009
	–0.039
	0.021
	14.80
	24.01

	ωx105
	0.000
	0.000
	1.066
	3.95
	6.58

	δ
	0.806
	0.598
	0.906
	71.05
	78.29

	βδ
	0.015
	0.000
	0.293
	18.09
	20.07
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	0.900
	0.822
	0.973
	–
	–

	Log-LLF
	3580.899
	3157.200
	3842.263
	–
	–


Notes:
a    The table presents summary statistics for parameter estimates, persistence (α + 0.5α– + β) and the log-likelihood function of each model across the sample firms.
b    ‘Significance’ in the last two columns refers to the proportions of the estimates that are significantly different from zero at the 5 and 10 per cent significance levels.
Table 7
Summary statistics of the ARCH parameter estimates for lag realized volatility across the sample firms at different time intervals a
	
	Median
	Lower quintile
	Upper quintile
	Significance b 

	
	
	
	
	5 per cent (%)
	10 per cent (%)

	Panel A:  Realized Volatility (5-minute Returns) 

	μx103
	0.507
	0.223
	0.806
	8.22
	15.79

	θ
	–0.006
	–0.037
	0.022
	16.78
	24.34

	ωx105
	5.865
	1.667
	13.278
	39.80
	49.34

	λ
	0.373
	0.190
	0.564
	69.74
	81.91

	βλ
	0.629
	0.460
	0.778
	75.99
	81.58

	
[image: image146.wmf]1

l

l

b

-


	1.035
	0.832
	1.233
	–
	–

	Log-LLF
	3582.988
	3162.487
	3857.484
	–
	–

	Panel B:  Realized Volatility (10-minute Returns) 

	μx103
	0.500
	0.245
	0.802
	8.88
	16.45

	θ
	–0.005
	–0.036
	0.024
	17.11
	25.00

	ωx105
	5.462
	1.329
	12.648
	39.14
	48.03

	λ
	0.324
	0.178
	0.476
	68.42
	81.91

	βλ
	0.696
	0.563
	0.820
	84.54
	88.16
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	1.093
	0.914
	1.255
	–
	–

	Log-LLF
	3586.830
	3161.302
	3854.975
	–
	–

	Panel C:  Realized Volatility (15-minute Returns) 

	μx103
	0.510
	0.251
	0.815
	8.22
	15.13

	θ
	–0.004
	–0.034
	0.024
	16.78
	24.67

	ωx105
	5.585
	1.717
	12.461
	34.87
	43.09

	λ
	0.286
	0.160
	0.432
	72.37
	81.58

	βλ
	0.739
	0.615
	0.849
	89.47
	91.45
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	1.119
	0.958
	1.260
	–
	–

	Log-LLF
	3585.219
	3154.368
	3853.077
	–
	–

	Panel D:  Realized Volatility (20-minute Returns) 

	μx103
	0.525
	0.255
	0.826
	8.88
	16.45

	θ
	–0.007
	–0.033
	0.022
	17.11
	23.03

	ωx105
	6.121
	1.837
	13.147
	36.84
	46.38

	λ
	0.260
	0.145
	0.417
	71.38
	82.24

	βλ
	0.754
	0.646
	0.870
	92.11
	93.42
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	1.158
	0.978
	1.304
	–
	–

	Log-LLF
	3572.717
	3139.903
	3844.834
	–
	–


Table 7 (Contd.)
	
	Median
	Lower quintile
	Upper quintile
	Significance b 

	
	
	
	
	5 per cent (%)
	10 per cent (%)

	Panel E:  Realized Volatility (30-minute Returns) 

	μx103
	0.529
	0.262
	0.853
	8.22
	15.79

	θ
	–0.005
	–0.034
	0.023
	17.11
	22.37

	ωx105
	5.486
	1.984
	12.660
	35.53
	43.75

	λ
	0.225
	0.137
	0.341
	69.74
	80.59

	βλ
	0.786
	0.703
	0.873
	93.75
	97.04
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	1.134
	0.976
	1.270
	–
	–

	Log-LLF
	3560.852
	3137.262
	3843.761
	–
	–


Notes:

a    The table presents the summary statistics of the ARCH parameter estimates for lagged realized volatility; the general specification of the ARCH model is as shown in Equation 27.

b   ‘Significance’ in the last two columns refers to the proportions of the estimates that are significantly different from zero at the 5 and 10 per cent significance levels.

Table 8  Frequency counts for the variables best describing volatility of stock returnsa
	Variables
	All firms
	
	Groups by average                     available strike number 
	Groups by intermediate Delta

	
	
	
	Group 1
	Group 2
	Group 3
	Group 1   
	Group 2 
	Group 3 

	
	n = 304
	
	n = 40
	n = 101
	n = 163
	n = 85
	n = 137
	n = 82

	Panel A:  ARCH specifications maximizing the likelihood of observed stock returnsb

	 σLRE best performance
	53.95
	
	85.00
	64.36
	39.88
	88.24
	48.18
	28.05

	   LLRE > LMF > LBS
	15.46
	
	25.00
	19.80
	10.43
	28.24
	12.41
	7.32

	   LLRE > LBS > LMF
	38.49
	
	60.00
	44.55
	29.45
	60.00
	35.77
	20.73

	 σMF best performance
	14.80
	
	5.00
	12.87
	18.40
	5.88
	15.33
	23.17


	   LMF > LLRE > LBS
	1.97
	
	0.00
	0.99
	3.07
	0.00
	2.92
	2.44

	   LMF > LBS > LLRE
	12.83
	
	5.00
	11.88
	15.34
	5.88
	12.41
	20.73

	 σBS best performance
	31.25
	
	10.00
	22.77
	41.72
	5.88
	36.50
	48.78

	   LBS > LLRE > LMF
	8.55
	
	5.00
	6.93
	10.43
	3.53
	9.49
	12.20

	   LBS > LMF > LLRE
	22.70
	
	5.00
	15.84
	31.29
	2.35
	27.01
	36.59

	Panel B:  Univariate regression model with the highest adjusted R2c

	 σLRE best performance
	12.50
	
	32.50
	17.82
	4.29
	27.06
	10.22
	1.22
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	3.95
	
	15.00
	4.95
	0.61
	9.41
	2.92
	0.00
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	8.55
	
	17.50
	12.87
	3.68
	17.65
	7.30
	1.22

	 σMF best performance
	25.66
	
	20.00
	23.76
	28.22
	24.71
	27.01
	24.39
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	2.96
	
	7.50
	3.96
	1.23
	4.71
	3.65
	0.00
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	22.70
	
	12.50
	19.80
	26.99
	20.00
	23.36
	24.39

	 σBS best performance
	61.84
	
	47.50
	58.42
	67.48
	48.24
	62.77
	74.39
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	3.62
	
	2.50
	4.95
	3.07
	5.88
	2.19
	3.66
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	58.22
	
	45.00
	53.47
	64.42
	42.35
	60.58
	70.73


Notes:

a    All firms are separated into three groups by average strike
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. Alternatively, all firms are divided into three groups by the average of the delta values between 0.15 and 0.85, 
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. All figures are percentages.
b    Panel A presents the performance of each variable in the ARCH specification model. LLRE, LMF and LBS denote the respective log-likelihood values of lagged realized volatility, model-free implied volatility and Black-Scholes implied volatility. 
c    Panel B presents the performance of the variables in the univariate regression with the explanatory variables, 
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 respectively denoting the adjusted R2 of lagged realized volatility, model-free implied volatility and Black-Scholes implied volatility.
Table 9  Summary statistics of univariate regression estimates across the sample firms a
	Variables
	Median
	Lower quintile
	Upper quintile
	No. of Firms b

	Panel A:  Realized volatility calculated by 30-minute intraday returns

	α
	0.179
	0.137
	0.243
	(302/303)

	
	0.029
	–0.008
	0.074
	(80/104)

	
	0.019
	–0.011
	0.057
	(58/79)

	
	0.034
	0.001
	0.064
	(74/93)

	
	0.024
	–0.005
	0.054
	(58/79)

	
	0.016
	–0.018
	0.054
	(50/75)

	
	0.022
	–0.010
	0.051
	(53/79)

	βLRE
	0.464
	0.361
	0.576
	(304/304)

	
	0.206
	0.115
	0.287
	(201/222)

	
	0.191
	0.090
	0.271
	(183/208)

	
	0.188
	0.092
	0.267
	(182/203)

	βMF
	0.706
	0.583
	0.793
	(302/303)

	
	0.525
	0.405
	0.652
	(299/300)

	
	0.154
	–0.076
	0.396
	(48/75)

	
	0.116
	–0.115
	0.305
	(38/57)

	βBS
	0.797
	0.687
	0.896
	(303/303)

	
	0.613
	0.506
	0.745
	(298/300)


	
	0.606
	0.348
	0.885
	(156/186)

	
	0.469
	0.230
	0.763
	(118/144)

	Adj. R2
	0.389
	0.281
	0.487
	–

	
	0.526
	0.404
	0.620
	–

	
	0.551
	0.444
	0.640
	–

	
	0.582
	0.483
	0.661
	–

	
	0.595
	0.498
	0.674
	–

	
	0.558
	0.454
	0.640
	–

	
	0.604
	0.507
	0.679
	–

	MSE
	0.008
	0.005
	0.017
	–

	
	0.006
	0.004
	0.013
	–

	
	0.006
	0.004
	0.011
	–

	
	0.005
	0.004
	0.011
	–

	
	0.005
	0.004
	0.011
	–

	
	0.006
	0.004
	0.011
	–

	
	0.005
	0.004
	0.011
	–

	Durbin-Watson
	1.512
	1.351
	1.716
	–

	
	1.613
	1.401
	1.803
	–

	
	1.637
	1.388
	1.834
	–

	
	1.797
	1.647
	1.917
	–

	
	1.806
	1.638
	1.931
	–

	
	1.648
	1.437
	1.837
	–

	
	1.810
	1.655
	1.903
	–


Table 9  (Contd.)
	Variables
	Median
	Lower quintile
	Upper quintile
	No. of Firms

	Panel B:  Realized volatility calculated by daily returns

	α
	0.193
	0.141
	0.277
	(296/298)

	
	0.024
	–0.021
	0.078
	(46/69)

	
	0.016
	–0.021
	0.062
	(30/51)

	
	0.026
	–0.010
	0.075
	(44/67)

	
	0.020
	–0.019
	0.064
	(37/57)

	
	0.010
	–0.026
	0.059
	(31/49)

	
	0.015
	–0.018
	0.060
	(32/54)

	βLRE
	0.501
	0.359
	0.637
	(296/299)

	
	0.192
	0.083
	0.312
	(127/157)

	
	0.176
	0.065
	0.303
	(120/142)

	
	0.171
	0.058
	0.298
	(117/136)

	βMF
	0.777
	0.618
	0.890
	(301/302)

	
	0.589
	0.424
	0.753
	(275/285)

	
	0.234
	–0.069
	0.511
	(46/64)

	
	0.154
	–0.124
	0.441
	(37/53)

	βBS
	0.864
	0.749
	0.989
	(303/303)

	
	0.700
	0.500
	0.857
	(276/289)

	
	0.617
	0.246
	0.998
	(95/126)

	
	0.530
	0.151
	0.846
	(74/96)

	Adj. R2
	0.283
	0.167
	0.384
	–

	
	0.382
	0.265
	0.501
	–

	
	0.388
	0.298
	0.517
	–

	
	0.420
	0.316
	0.540
	–

	
	0.424
	0.327
	0.542
	–

	
	0.397
	0.301
	0.532
	–

	
	0.433
	0.326
	0.550
	–

	MSE
	0.016
	0.011
	0.033
	–

	
	0.013
	0.009
	0.026
	–

	
	0.013
	0.009
	0.026
	–

	
	0.013
	0.008
	0.026
	–

	
	0.012
	0.008
	0.025
	–

	
	0.013
	0.009
	0.026
	–

	
	0.012
	0.008
	0.025
	–

	Durbin-Watson
	1.735
	1.550
	1.878
	–

	
	1.797
	1.671
	1.895
	–

	
	1.816
	1.663
	1.909
	–

	
	1.822
	1.709
	1.913
	–

	
	1.836
	1.706
	1.929
	–

	
	1.814
	1.678
	1.907
	–

	
	1.833
	1.695
	1.931
	–


Notes: 

a    The regression model is as specified in Equation 29.
b    All figures are percentages, with the exception of the figures in parentheses for the number of firms referring to those whose coefficient estimates are significantly different from zero at the 5 and 10 per cent significance levels.

Appendix A - Proof of Proposition 1

Lemma A.1: 


[image: image169.wmf]ò

å

ò

¥

¥

=

-

-

-

=

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

0

2

0

0

0

2

)

0

,

max(

)

,

(

!

)

(

2

dK

K

K

S

K

T

C

n

T

e

S

dS

E

n

n

N

N

B

B

n

n

T

T

B

t

B

t

l

l

,
where


[image: image170.wmf]t

B

t

B

t

B

t

dZ

S

dS

N

N

N

s

=

                                         

[image: image171.wmf](

)

(

)

T

N

k

t

t

B

t

N

2

2

2

2

+

+

=

d

s

s



[image: image172.wmf]t

B

t

B

t

B

t

dZ

S

dS

n

n

n

s

=



[image: image173.wmf](

)

(

)

T

n

k

t

B

t

n

2

2

2

2

+

+

=

d

s

s



[image: image174.wmf]t

N

~Poisson
[image: image175.wmf])

,

(

t

l


CBn (T, K) is a set of option prices when the number of jumps is given. 

Proof:
Define
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where      
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From equation (A.1), we obtain:
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By Equation (A.2),
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We can use the method adopted in Britten-Jones and Neuberger (2000):
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Lemma A.2: 
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Proof: 
Under the jump process,
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Then
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From Equation (A.4),
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Proof of Proposition 1: 
By Lemmas A.1 and A.2, we can obtain:
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Appendix B - Proof of Lemma 2.2.1 and Proposition 2

Lemma B.1: 
If there is no jump, the dynamics of the asset price can be expressed as: 
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Proof: 
If there is no jump, then the dynamics of the pricing kernel are: 


[image: image192.wmf])

1

,

0

(

~

,

)

0

(

1

)

0

(

N

X

e

m

m

t

bX

a

t

t

t

+

-

=

,
and the asset price process is: 
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From Equation (12), 


[image: image194.wmf][

]

1

|

|

2

1

1

1

2

)

0

(

=

=

=

ú

û

ù

ê

ë

é

+

-

+

-

-

b

a

t

bX

a

P

t

t

t

P

e

F

e

E

F

m

m

E

t


Then  
[image: image195.wmf]0

2

2

=

+

b

a

.
and


[image: image196.wmf]1

|

|

2

1

1

1

1

2

)

0

(

)

0

(

=

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

+

+

+

-

+

+

+

-

-

-

t

t

t

t

t

t

h

b

a

t

X

h

bX

a

P

t

t

t

t

t

P

e

F

e

E

F

S

S

m

m

E

a

a


Thus  
[image: image197.wmf]0

2

2

=

+

+

+

t

t

h

b

a

a

.
Then we have 
[image: image198.wmf]2

t

t

h

-

=

a


Proof of Lemma 2.2.1: 
If there is no jump, the NGARCH(1,1) model is: 

       
[image: image199.wmf])

0

(

1

2

ln

t

G

t

G

t

G

t

G

t

X

h

h

S

S

+

-

=

-

                   (B.2)
where

       
[image: image200.wmf]2

*

)

0

(

1

*

2

1

1

0

)

(

c

X

h

h

h

t

G

t

G

t

G

t

-

+

+

=

-

-

b

b

b

              (B.3)

[image: image201.wmf])

1

,

0

(

~

)

0

(

N

X

t


Then,
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First, we have the following results for the conditional mean return:
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Next, by Donsker’s Theorem, 
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 converges weakly to the standard Brownian motion, Zt . Applying Theorem 5.4 of Kurtz and Protter (1991) yields a weak convergence to (StG, htG ). Thus, the limiting model under measure Q is: 
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We assume that: 
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We can calculate d ln StG by Ito’s Lemma,
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Compared to Equation (B.4), we can find that 
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Lemma B.2: 
Under the NGARCH(1,1)-Normal framework, implied volatility is as follows:
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where CG(T, K) is a set of option prices under the NGARCH(1,1)-Normal model.

Proof: 
If the stock prices follow NGARCH(1,1)-Normal model and 
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Thus,
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From Equation (B.8), 
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Hence,
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Lemma B.3: 
If 
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Proof: 
Chang, Chen and Lin (2006)
Proof of Proposition 2:
By lemma B.3, 
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Appendix C - Proof of Equation (19)
Britten-Jones and Neuberger (2000) derived model-free implied volatility as a risk-neutral integral spread of options for different times to maturity:
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The no-arbitrage argument implies the existence of a forward measure, F; thus Jiang and Tian (2005) considered the forward asset, as follows:

[image: image222.wmf](

)

(

)

2

0

0

2

00

,max0,

2

F

T

F

t

t

CKTFK

dF

EdK

FK

¥

éù

--

æö

êú

=

ç÷

êú

èø

ëû

òò

.         (C.2)
Set the forward price at time t as Ft = St /B(t,T ) and the forward option price at time t as CF(K,T ) = C (K,T )/B(t,T ). Here, St is the asset price eliminating the present values of all future dividends paid prior to the maturity of the option. Thus, Equation (C.2) can be replaced by:
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The proof above uses the put-call parity 
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Appendix Table A.1 
Performance under variance and logarithm regression models

	Variables
	All firms
	
	Groups by average               available strike number 
	Groups by intermediate Delta

	
	
	
	Group 1
	Group 2
	Group 3
	Group 1   
	Group 2 
	Group 3 

	
	n = 304
	
	n = 40
	n = 101
	n = 163
	n = 85
	n = 137
	n = 82

	Panel A:  Univariate regression model with the highest adjusted R2 replacing volatility variables by logarithms c

	 log(σLRE ) best performance
	11.51
	
	42.50
	14.85
	1.84
	28.24
	8.03
	0.00
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	6.91
	
	20.00
	10.89
	1.23
	16.47
	5.11
	0.00

	 log(σMF) best performance
	24.67
	
	17.50
	22.77
	27.61
	22.35
	25.55
	25.61
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	22.70
	
	17.50
	18.81
	26.38
	21.18
	21.90
	25.61

	 log(σBS ) best performance
	63.82
	
	40.00
	62.38
	70.55
	49.41
	66.42
	74.39
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	59.21
	
	30.00
	58.42
	66.87
	44.71
	61.31
	70.73

	Panel B:  Univariate regression model with the highest adjusted R2 replacing volatility variables by variances c

	 σLRE best performance
	14.47
	
	30.00
	20.79
	6.75
	29.41
	11.68
	3.66
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	9.54
	
	17.50
	14.85
	4.29
	18.82
	8.03
	2.44

	 σMF best performance
	26.32
	
	27.50
	25.74
	26.38
	27.06
	27.74
	23.17

	   
[image: image230.wmf]222

MFBSLRE

RRR

>>


	22.70
	
	17.50
	20.79
	25.15
	21.18
	23.36
	23.17

	 σBS best performance
	59.21
	
	42.50
	53.47
	66.87
	43.53
	60.58
	73.17
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	53.62
	
	37.50
	45.54
	62.58
	35.29
	56.20
	68.29


Notes:

a    All firms are separated into three groups by average strike
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. Alternatively, all firms are divided into three groups by the average of the delta values between 0.15 and 0.85, 
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. All figures are percentages.
b    Panel A presents the performance of each of the following univariate regression models:
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c    Panel B presents the performance of each of the following univariate regression models:
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Appendix Table A.2 
Performance of different curve fitting methods a
	Variables
	All firms
	
	Groups by average                available strike number
	Groups by intermediate Delta

	
	
	
	Group 1
	Group 2
	Group 3
	Group 1   
	Group 2 
	Group 3 

	
	n = 304
	
	n = 40
	n = 101
	n = 163
	n = 85
	n = 137
	n = 82

	Panel A:  ARCH specifications maximizing the likelihood of observed stock returns b

	Lnoarb > Lquadratic
	89.14
	
	92.50
	88.12
	88.96
	84.71
	92.70
	87.80

	Lquadratic > Lnoarb
	10.86
	
	7.50
	11.88
	11.04
	15.29
	7.30
	12.20

	Lnoarb > Lcubic
	89.80
	
	90.00
	87.13
	91.41
	89.41
	89.78
	90.24

	Lcubic > Lnoarb
	10.20
	
	10.00
	12.87
	8.59
	10.59
	10.22
	9.76

	Lquadratic > Lcubic
	78.29
	
	70.00
	72.28
	84.05
	76.47
	78.10
	80.49

	Lcubic > Lquadratic
	21.71
	
	30.00
	27.72
	15.95
	23.53
	21.90
	19.51

	Panel B:  Univariate regression model with the highest adjusted R2 b
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	80.59
	
	92.50
	83.17
	76.07
	91.76
	75.18
	78.05
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	19.41
	
	7.50
	16.83
	23.93
	8.24
	24.82
	21.95

	   
[image: image244.wmf]22

noarbcubic

RR

>


	78.29
	
	72.50
	75.25
	81.60
	82.35
	77.37
	75.61
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	21.71
	
	27.50
	24.75
	18.40
	17.65
	22.63
	24.39
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	59.54
	
	37.50
	49.50
	71.17
	48.24
	62.04
	67.07
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	40.46
	
	62.50
	50.50
	28.83
	51.76
	37.96
	32.93


Notes:
a    The table compares the performance of three curve fitting methods: (i) the quadratic function fitting method under a no-arbitrage condition; (ii) the quadratic function fitting method which is not conditional on no-arbitrage (Taylor, Yadav and Zhang, 2006); and (iii) the cubic spline fitting method (Jiang and Tian, 2005). All figures are percentages.
b    Panel A shows that the Lnoarb method outperforms both Lquadratic (quadratic-function fitting) and Lcubic (cubic-spline fitting). Obvious tendencies under the different groups are found only between the quadratic function and cubic spline fitting methods. With an increase in the number of observations, there is a corresponding increase in the forecasting ability of the quadratic function fitting method. This result indicates that the quadratic function fitting method is a not an appropriate fitting method for limited numbers of observations. The results are similar for Panel B.
Appendix Table A.3 
Performance across the three methodsa
	Variables
	All firms
	
	Group by average             available strike number
	Group by intermediate Delta

	
	
	
	Group1
	Group2
	Group3
	Group1   
	Group2
	Group3 

	
	n = 304
	
	n = 40
	n = 101
	n = 163
	n = 85
	n = 137
	n = 82

	Panel A:  Univariate regression model with the highest adjusted R2 replacing volatility variables by logarithms b

	 σnoarb best performance
	80.92
	
	82.50
	78.22
	82.21
	77.65
	83.21
	80.49

	Lnoarb > Lquadratic > Lcubic
	68.42
	
	62.50
	62.38
	73.62
	63.53
	70.80
	69.51

	 σquadratic best performance
	9.87
	
	7.50
	9.90
	10.43
	12.94
	7.30
	10.98

	Lquadratic > Lnoarb > Lcubic
	8.88
	
	7.50
	8.91
	9.20
	11.76
	6.57
	9.76

	 σcubic best performance
	9.21
	
	10.00
	11.88
	7.36
	9.41
	9.49
	8.54

	Lcubic > Lnoarb > Lquadratic
	8.22
	
	10.00
	9.90
	6.75
	7.06
	9.49
	7.32

	Panel B:  Univariate regression model with the highest adjusted R2 replacing volatility variables by variances b

	 σnoarb best performance
	62.83
	
	67.50
	63.37
	61.35
	75.29
	57.66
	58.54
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	43.42
	
	32.50
	36.63
	50.31
	41.18
	41.61
	48.78

	 σquadratic best performance
	16.12
	
	5.00
	12.87
	20.86
	7.06
	20.44
	18.29
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	15.46
	
	5.00
	11.88
	20.25
	7.06
	19.71
	17.07

	 σcubic best performance
	21.05
	
	27.50
	23.76
	17.79
	17.65
	21.90
	23.17
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	17.76
	
	25.00
	19.80
	14.72
	16.47
	17.52
	19.51


Notes:

a    The curve fitting error is diminished as far as possible by using the quadratic function fitting under a condition of no-arbitrage. All figures are percentages.
b    Although our method demonstrates the best performances in either Panel A or Panel B, there are still about 40 per cent of firms with a better fit for other methods in Panel B. 
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� See the proof in Appendix A.


� The details are downloaded from the source website: http://www.cboe.com/micro/vix/vixwhite.pdf.


� ∆Ki for the lowest strike is defined as the difference between the lowest strike and the next higher strike. Similarly, ∆Ki for the highest strike is the difference between the highest strike and the next lower strike.


� Taylor et al. (2006) followed Bliss and Panigirtzoglou (2002, 2004) taking σ* as a constant for a convenient one-to-one mapping between delta and the strike price.


� We assume that φstr > 0 in order to ensure that the volatility curve fitted is a convex function, and that φrr2 – 16 φatm φstr < 0 for the volatility curve is always positive.


� Two firms in our sample had missing values on the first trading day; thus, we substituted the nearest volatility estimates thereafter.


� See the details in Section 3.2.


� Christensen and Prabhala (1998) and Christensen, Hansen and Prabhala (2001) argued against the overlapping problems.


� The monthly observations begin with the volatility forecast for a horizon of 19 January 1999 to the expiration date of 20 February 1999, and end with the volatility forecast for option trading on 22 November 2004 until the expiration date, 18 December 2004. Our sample period comprises of 71 compete monthly observations, but not all firms have 71 monthly observations restricted by the option data with sufficient available strike prices.


� Since the transaction records for each firm have different price performances for the different exchanges, we extract the transaction prices form the primary exchange for our option data.


� Following Taylor et al. (2006), the constraints are ω > 0, α ≥ 0, α + α– ≥ 0, β ≥ 0, βλ ≥ 0, βγ ≥ 0 and βδ ≥ 0.
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