
Supplement Chapter 5 

Alternative Theories for Deriving the Optimal Hedge Ratio 

5.1 Introduction 

The basic concept of hedging is to combine investments in the spot market and futures 

market to form a portfolio that will eliminate (or reduce) fluctuations in its value.  Specifically, 

consider a portfolio consisting of sC  units of a long spot position and fC  units of a short futures 

position.
1
  Let tS  and tF  denote the spot and futures prices at time t, respectively.  Since the 

futures contracts are used to reduce the fluctuations in spot positions, the resulting portfolio is 

known as the hedged portfolio.  The return on the hedged portfolio, hR , is given by: 
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one-period returns on the spot and futures positions, respectively.  Sometimes, the hedge ratio is 

discussed in terms of price changes (profits) instead of returns.  In this case the profit on the 

hedged portfolio, HV , and the hedge ratio, H , are respectively given by: 
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where ttt SSS  1  and ttt FFF  1 .   

The main objective of hedging is to choose the optimal hedge ratio (either h or H).  As 

mentioned above, the optimal hedge ratio will depend on a particular objective function to be 

optimized.  Furthermore, the hedge ratio can be static or dynamic.  In subsections A and B, we 



will discuss the static hedge ratio and then the dynamic hedge ratio. 

It is important to note that in the above setup, the cash position is assumed to be fixed and 

we only look for the optimum futures position.  Most of the hedging literature assumes that the 

cash position is fixed, a setup that is suitable for financial futures.  However, when we are 

dealing with commodity futures, the initial cash position becomes an important decision variable 

that is tied to the production decision.  One such setup considered by Lence (1995 and 1996) will 

be discussed in subsection C. 

 

5.2  Static Case 

We consider here that the hedge ratio is static if it remains the same over time.  The static 

hedge ratios reviewed in this paper can be divided into eight categories, as shown in Table 5.1.  

We will discuss each of them in the paper. 

 

Table 5.1: A List of Different Static Hedge Ratios 

Hedge Ratio Objective Function 

 Minimum-Variance (MV) Hedge Ratio 

 
Minimize variance of hR  

 Optimum Mean-Variance Hedge Ratio 
Maximize    hh RVar

A
RE

2
  

 

 Sharpe Hedge Ratio  
Maximize 

 
 h

Fh

RVar

RRE 
 

 

 Maximum Expected Utility Hedge Ratio  Maximize   1WUE  

 

 Minimum Mean Extended-Gini (MEG) 

Coefficient Hedge Ratio  

 

Minimize    vRhv  

 Optimum Mean-MEG Hedge Ratio Maximize    vRRE hvh   

 

 Minimum Generalized Semivariance (GSV) 

Hedge Ratio  

 

Minimize  hRV  ,  



 Maximum Mean-GSV Hedge Ratio  

 

 Minimum VaR Hedge Ratio over a given 

   time period   

Maximize    hh RVRE  ,  

 

Minimize   hh REZ   

 

 

Notes:   

1. hR  = return on the hedged portfolio, 

  hRE  = expected return on the hedged portfolio, 

  hRVar  = variance of return on the hedged portfolio, 

 h  = standard deviation of return on the hedged portfolio 

 Z = negative of left percentile at  for the standard normal distribution 

 A = risk aversion parameter, 

 FR  = return on the risk-free security, 

   1WUE  = expected utility of end-of-period wealth, 

    vRhv  = mean extended-Gini coefficient of hR , 

  hRV  ,  = generalized semivariance of hR . 

2. With  1W  given by equation (5.17), the maximum expected utility hedge ratio includes the 

hedge ratio considered by Lence (1995 and 1996). 

 

 

5.3  Minimum-Variance Hedge Ratio  

The most widely-used static hedge ratio is the minimum-variance (MV) hedge ratio.  

Johnson (1960) derives this hedge ratio by minimizing the portfolio risk, where the risk is given 

by the variance of changes in the value of the hedged portfolio as follows:   

       FSCovCCFVarCSVarCVVar fsfsH  ,222
. 

The MV hedge ratio, in this case, is given by: 
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Alternatively, if we use definition (1a) and use  hRVar  to represent the portfolio risk, 

then the MV hedge ratio is obtained by minimizing  hRVar  which is given by:  

       
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In this case, the MV hedge ratio is given by: 
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where   is the correlation coefficient between sR  and fR , and s  and f are standard 

deviations of sR  and fR , respectively.   

The attractive features of the MV hedge ratio are that it is easy to understand and simple 

to compute.  However, in general the MV hedge ratio is not consistent with the mean-variance 

framework since it ignores the expected return on the hedged portfolio.  For the MV hedge ratio 

to be consistent with the mean-variance framework, either the investors need to be infinitely risk-

averse or the expected return on the futures contract needs to be zero. 

 

5.4  Optimum Mean-Variance Hedge Ratio 

 Various studies have incorporated both risk and return in the derivation of the hedge 

ratio.  For example, Hsin et al. (1994) derive the optimal hedge ratio that maximizes the 

following utility function: 
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where A represents the risk aversion parameter.  It is clear that this utility function incorporates 

both risk and return.  Therefore, the hedge ratio based on this utility function would be consistent 

with the mean-variance framework.  The optimal number of futures contract and the optimal 

hedge ratio are respectively given by: 
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One problem associated with this type of hedge ratio is that in order to derive the optimum hedge 



ratio, we need to know the individual's risk aversion parameter.  Furthermore, different 

individuals will choose different optimal hedge ratios, depending on the values of their risk 

aversion parameter.   

Since the MV hedge ratio is easy to understand and simple to compute, it will be 

interesting and useful to know under what condition the above hedge ratio would be the same as 

the MV hedge ratio.  It can be seen from equations (5.2b) and (5.4) that if A  or  E R f  0

, then h2  would be equal to the MV hedge ratio *

Jh .  The first condition is simply a restatement 

of the infinitely risk-averse individuals.  However, the second condition does not impose any 

condition on the risk-averseness, and this is important.  It implies that even if the individuals are 

not infinitely risk averse, then the MV hedge ratio would be the same as the optimal mean-

variance hedge ratio if the expected return on the futures contract is zero (i.e. futures prices 

follow a simple martingale process).  Therefore, if futures prices follow a simple martingale 

process, then we do not need to know the risk aversion parameter of the investor to find the 

optimal hedge ratio. 

 

5.5  Sharpe Hedge Ratio 

Another way of incorporating the portfolio return in the hedging strategy is to use the 

risk-return tradeoff (Sharpe measure) criteria.  Howard and D'Antonio (1984) consider the 

optimal level of futures contracts by maximizing the ratio of the portfolio's excess return to its 

volatility: 
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where  hh RVar2  and FR  represents the risk-free interest rate.  In this case the optimal 



number of futures positions, C f
* , is given by: 
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From the optimal futures position, we can obtain the following optimal hedge ratio:  
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Again, if  E R f  0 , then h3
 reduces to:  
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which is the same as the MV hedge ratio *

Jh .   

As pointed out by Chen et al. (2001), the Sharpe ratio is a highly non-linear function of 

the hedge ratio.  Therefore, it is possible that equation (5.7), which is derived by equating the 

first derivative to zero, may lead to the hedge ratio that would minimize, instead of maximizing, 

the Sharpe ratio.  This would be true if the second derivative of the Sharpe ratio with respect to 

the hedge ratio is positive instead of negative.  Furthermore, it is possible that the optimal hedge 

ratio may be undefined as in the case encountered by Chen et al. (2001), where the Sharpe ratio 

monotonically increases with the hedge ratio. 

 

 

5.6  Estimation of the Minimum-Variance (MV) Hedge Ratio  

 The conventional approach to estimating the MV hedge ratio involves the regression of 



the changes in spot prices on the changes in futures price using the OLS technique (e.g., see 

Junkus and Lee, 1985).  Specifically, the regression equation can be written as:  

   ttt eFaaS  10 ,    (5.9) 

where the estimate of the MV hedge ratio, jH , is given by 1a .  The OLS technique is quite 

robust and simple to use.  However, for the OLS technique to be valid and efficient, assumptions 

associated with the OLS regression must be satisfied.  One case where the assumptions are not 

completely satisfied is that the error term in the regression is heteroscedastic.  This situation will 

be discussed later. 

Another problem with the OLS method, as pointed out by Myers and Thompson (1989), 

is the fact that it uses unconditional sample moments instead of conditional sample moments, 

which use currently available information.  They suggest the use of the conditional covariance 

and conditional variance in equation (5.2a).  In this case, the conditional version of the optimal 

hedge ratio (equation (5.2a)) will take the following form: 
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Suppose that the current information ( 1 t ) includes a vector of variables ( 1tX ) and the 

spot and futures price changes are generated by the following equilibrium model: 

   ttt uXS  1 , 

   ttt vXF   1 . 

In this case the maximum likelihood estimator of the MV hedge ratio is given by (see Myers and 

Thompson (1989)): 
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where uv̂  is the sample covariance between the residuals tu  and tv , and 2ˆ
v  is the sample 

variance of the residual tv .  In general, the OLS estimator obtained from equation (5.9) would be 

different from the one given by equation (5.10).  For the two estimators to be the same, the spot 

and futures prices must be generated by the following model: 

tt uS  0 ,    tt vF  0 .  

In other words, if the spot and futures prices follow a random walk, then with or without drift, 

the two estimators will be the same.   

 

5.7 Numeric Examples 

 

If σs = 0.01, σf  = 0.02, E(Rf) = 0.02, E(Rs) = 0.015, A = 200, RF = 0.02, and ρ = 0.6. Then we can 

use equation (5.2b), (5.4), and (5.7) to calculate the Johnson minimum variance hedge ratio, 

optimal mean-variance hedge ratio, and Sharp hedge ratio.  
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Sharp hedge ratio = 
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From this example, we found that if A approaches ∞, then optimal minimum variance hedge 

ratio equals to 0.3. Similarly, if E(Rf) equals to zero, then Sharpe hedge ratio equals to 0.3. 

Therefore, we can conclude that both optimal MV hedge ratio and Sharpe hedge ratio are 

generalized cases of Johnson MV hedge ratio.  

 

  5.8 Summary  

In this Chapter, we have theoretically and empirically discussed three hedge ratios, i.e. Johnson 

minimum variance hedge ratio, optimal mean-variance hedge ratio, and Sharp hedge ratio. We 

also show both optimal mean-variance hedge ratio, and Sharp hedge ratio can be reduced to 

Johnson minimum variance hedge ratio. 


