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Abstract 

    We attempt to identify in this paper the role of trading noise as a transactions 

cost to market participant in the sense of Stoll (2000), especially in the presence of 

trading concentration. Applying the measures of Hu (2006) and Kang and Yeo (2008), 

we analyze the noise proportion in intraday stock returns and its interaction with 

investor herding and search cost. Although this noise is high on individual orders and 

low on institutional orders, its behavior at market open is entirely different from the 

rest of the day. Noises for small cap stocks, unlike volatilities, are lower than those for 

large cap stocks. We also found that noise relates positively to trading volume, but 

inversely to holdings and turnover ratio of institutional investors. Responses from 

institutional and individuals are quite the opposite. The noise proportion generated by 

individual order rises with institutional turnover and search cost encountered, while 

that of institutional order behaves just oppositely. At market open, behaviors of noise 

from institutional and individual orders just switch mutually, and then switch back 

afterwards. Also, noise from high-cap stocks is actually more responsive than that 

from low-cap ones across investors. So trading noise is a specific transactions cost, 

prominent to only certain investors, at certain time and for certain stocks in the market, 

rather than a general market friction as argued in Stoll (2000). This transactions cost 

is inversely related to search costs encountered in trading, which depends on investor, 

trading hour of day and market capitalization of stocks. 
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I. Introduction 

 

Trading in markets involves general transaction costs applicable to the entire market as well as 

specific costs only born by certain investors. The former acts as a friction in trading, which could be 

noises as argued in Stoll (2000) or herding out of information cascades (see Nofsinger and Sias 

(1999), Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992) and Avery and Zemsky 

(1999, AZ), among others). The latter could take the form of either information asymmetry (as 

discussed in Diamond and Verrecchia (1981), Glosten and Milgrom (1985), Kyle (1985), Admati 

(1991), Easley and O’Hara (1992) and Easley, Kiefer, and O’Hara (1997)) or search cost as 

modeled in Vayanos and Wang (2007, VW). This study addresses the role of trading noise as a 

transactions cost to market participant, especially in the presence of trading concentration. 

Specifically, we attempt to verify if trading noise really qualifies to be a general transactions cost, or 

a market friction, in an intraday framework. 

It has been well document in Amihud and Mendelson (1987), Stoll and Whaley (1990), and 

Stoll (2000) that stock return volatility is the highest right after market opens. Stoll (2000) 

suggested that the high volatility is caused by friction, a general transaction cost for everyone in the 

market. Alternatively, Lakonishok, Shleifer, and Vishny (1992, LSV), Choe, Kho and Stulz, (1998),  

Wermers (1999) as well as Bowe and Domuta (1998) stressed that volatility is closely related to 

information-induced herding. However, VW and Lin, Tsai and Sun (2010) argue that price 

variations from trading concentration should be considered as a specific, rather than general, 

transaction cost. Based on that notion, an investor can optimize by allocating trades over when 

transaction cost specific to the investor is the most favorable. Hu (2006) applied a return 

decomposition mechanism to conclude that specific transaction cost causes the market to be volatile 

at open since frictional noises are the smallest during the day. We adopt this concept but attempt to 

identify its driving factor, as how Lin, et al. (2009) analyses factors behind trading concentration. 

 We found that noise component of return volatility is stronger when trading is more 

concentrated, suggesting a different perspective from Lin, Sanger, and Booth (1995) and Hu (2006). 

Although the time needed to fill an order, or the inverse of the number of orders matched with a 

certain time window, produces less noise, it is quite the contrary at market open. Moreover, we 

argue noise is influenced more by trading concentration, at open, when search cost prevails in 

market transaction, than at close. We also found that limit order book dispersion, which measures how 

tightly the orders are placed to each other or how closely they are to the midquote, affect trading noise.  

But the pattern for foreign institutional is just the opposite to that for individual investors. Response of 
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noise to order dispersion, or search cost, differs by market capitalizations as well as by trading hours. 

 We consider trading activity more in an dynamic sense by measuring order intensity not by 

quantity, but by it sequences based on Patterson and Sharma (2006, PS). It captures intraday order 

flows better than the popular LSV method, one more suitable for longer time frame. In the context 

of investor herding, we adopted a cost-based framework of trading concentration to see how return 

volatility decomposition should be evaluated. The dynamic trading intensity helps us capturing how 

‘friction’ really arise from trades. As search cost goes up, so does noise. However, search generates 

less noise at market open than at market close. Therefore, noise is lower when specific search cost 

prevails, and noise gets higher when general friction rises. 

Although noise proportion of stock returns is high on individual orders and low on institutional 

orders, its behavior at market open is entirely different from the rest of the day. Noises for small cap 

stocks, unlike volatilities, are lower than those for large cap stocks. We also found that noise relates 

positively to trading volume, but inversely to holdings and turnover ratio of institutional investors. 

Nnot only falls when herding is the most significant, but also inversely related to search cost 

proxies. Over an intraday session, although noise increases over time, it is influenced less and less 

by investor herding. Moreover, trading noise is also found to be sensitive to only certain investors in 

the market when they trade heavily. Only investors with lower search cost drives up market noise in 

heavy trading. Trading noise maybe just a specific transaction cost, as information cost, prominent 

to only certain investors in the market. If trading noise is not compatible with general market 

phenomena, then it may not be a general transaction cost as argued in Stoll (2000). Trading noise 

could well be just another kind of specific cost, rather than a market friction. 

Our study helps identifying for various types of investors a more cost-efficient time to trade. 

Both individual and foreign institutional investors (FII’s), although facing higher search cost, bear 

relatively much lower general transaction cost caused by noise, especially at market open, when 

there is significantly intensive trading. But foreign institutional benefit more from trading at market 

close than at market open when trading do not concentrate. The results of this study contribute 

highly to the understanding of search cost and its influence on noise. A brief literature review and 

discussion is given in Section II. Data and empirical results are laid out in Section III. Conclusion is 

given in Section IV. 

 

II. Noise and Trading 

 

Trading noise has long been considered a crucial factor to asset returns. When market trading 
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is heavily concentrated, noise plays a more important role. Literatures have modeled noise as 

investor irrationality or information barrier, among others. Although the direct effect of noise 

trading to a securities market seems to be reducing informational efficiency, standard models 

feature strong countervailing effects. Greater noise trading induces rational agents to trade more 

aggressively on their existing information and provides them with incentives to acquire better 

information. As a result, Grossman and Stiglitz (1980) and Kyle (1985), argued that noise trading 

does not reduce informational efficiency. Furthermore, Kyle (1985) suggested that noise trading 

improves informational efficiency. 

However, competing models contend that rational agents do not fully offset noise traders’ 

demands because of various limits to arbitrage. De Long, Shleifer, Summers, and Waldmann (1990) 

indicated rational arbitrageurs sometimes reinforce demand shocks from noise traders because they 

anticipate mispricing will worsen in the short-run. Bikhchandani and Sharma (2001) classified 

herding behavior into rational and irrational ones. Rational herding takes place when investors make 

the same response to a piece of information or when they exhibit similar preference for a stock, 

while irrational herding occurs as investors ignore their own information but imitate or follow 

others’ trades.  

Many have studied situations of trading against one's own private information (e.g., Jarrow 

(1992), Allen and Gale (1992), Allen and Gorton (1992), Chakraborty and Yilmaz (2004a)) in the 

analysis of market manipulation, where the informed may trade in a wrong direction to increase 

noise in trading volume. They tend to adopt models other than Kyle (1985). There are several 

studies modeling trading manipulation with variations of Kyle (1985), such as Chakraborty and 

Yilmaz (2004) and Huddart, Hughes, and Levine (2001). Herding behavior is also considered a 

challenge to the efficient market paradigm. At a group level it is considered irrational as it leads to 

mispricing, but it can be rational at an individual level. Literatures argue that the herding arises 

from the interaction among agents as they copy each other’s decisions. The models of BHW and 

Bannerjee (1992) considered that individuals make their decisions sequentially at a time, taking into 

account the decisions of the individuals preceding them. The model proposed by Cont and 

Bouchaud (2000) considered, instead of a sequential decision process, a random communication 

structure. Random interactions between agents lead to a heterogeneous market structure. AZ argues 

that information cascades will be short-lived and fragile as one contrarian trade from the herd can 

quickly stop an information cascade. 

Noise and Information 

Following the definition of Hu (2006), we make the following decomposition of the log price 
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of a given stock, 

ttt nmP += , 0][ =+ jtt nE , and 0][ =+ jttt nnE as j→∞ (1) 

where tm  is considered as the permanent component of the stock price and follows a random walk 

process,  

ttt umm += −1 , 0][1 =− tt uE , 22 ][ utuE σ= , and 0][ =−ittnuE , i=1,2,… (2) 

Where tu  is a white noise and is orthogonal to 1−tm . The other component of tP , tn , is a 

temporary noise which disappears over time. After simple algebra, we would obtain 

tjttt nPPE =− + ][ as j→∞ (3) 

The volatility of stock return )( 1−− tt PPVar  can be decomposed into )( tuVar , )( 1−− tt nnVar  and 
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will be used as a relative measure of noise within stock return volatility subsequently. When noise 

ratio of the entire market is computed, transactions price is used. But the midpoint of buy and sell 

order price is used in place of market price when noise ratio of a certain type of investor is to be 

computed. 

 Table I reports noise proportion and return volatility computed according to the definition 

above, by market capitalization and intraday interval. Volatilities and noise proportions of small-cap 

stocks exhibit in general a U-shaped pattern across a trading day, but noise for large-cap stocks tend 

to go up from open to close. Although this noise is high on individual orders and low on 

institutional orders, its behavior at market open is entirely different from the rest of the day. Noises 

for small cap stocks, unlike volatilities, are lower than those for large cap stocks. We also found that 

noise relates positively to trading volume, but inversely to holdings and turnover ratio of 

institutional investors. 

We found that noise proportion of stock returns not only falls when herding is the most 

significant, but also inversely related to search cost proxies. Over an intraday session, although 

noise increases over time, it is influenced less and less by investor herding. Moreover, trading noise 

is also found to be sensitive to only certain investors in the market when they trade heavily. Only 

investors with lower search cost drives up market noise in heavy trading. Trading noise maybe just 

a specific transaction cost, as information cost, prominent to only certain investors in the market. If 
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trading noise is not compatible with general market phenomena, then it may not be a general 

transaction cost as argued in Stoll (2000). Trading noise could well be just another kind of specific 

cost, rather than a market friction. 

 

A measure of herding 

 We consider trading activity more in an dynamic sense by measuring order intensity not by 

quantity, but by it sequences based on Patterson and Sharma (2006, PS). It captures intraday order 

flows better than the popular LSV method, one more suitable for longer time frame. In the context 

of investor herding, we adopted a cost-based framework of trading concentration to see how return 

volatility decomposition should be evaluated. The dynamic trading intensity helps us capturing how 

‘friction’ really arise from trades. As search cost goes up, so does noise. However, search generates 

less noise at market open than at market close. Therefore, noise is lower when specific search cost 

prevails, and noise gets higher when general friction rises. 

To gauge the extent of trading concentration, we have adopted a dynamic measure specifically 

for a high frequency trading environment. Most of the studies carried out to test for herding in 

capital markets have proved inconclusive. The common LSV measure computes the proportion of 

market participants buying or selling within a given period and hence cannot capture dynamic order 

flows. Its inference relies on conventional t-test, making it subject to distributional imperfections 

especially with high frequency data. As a result, various measures have been proposed lately to 

overcome its limitations. Radalj and McAleer (1993) noted that the main reason for the lack of 

empirical evidence of herding may lie in the choice of data frequency, in the sense that too 

infrequent data sampling would lead to intra-interval herding being missed (at monthly, weekly, 

daily or even intra-daily intervals). For the purposes of our investigation we used the PS measure, 

which we consider the most suitable, since it overcomes this problem of intraday data. Constructed 

from intraday data, it has a major advantage of not assuming herding to vary with extreme market 

conditions, and considering the market as a whole rather than a just the institutional investors.  

PS statistic measures herding intensity in terms of the number of runs. The bootstrapped 

runs test of PS uses run numbers of buy and sells orders
3
. As our data set contains identification of 

buy or sell orders, we would not need Lee and Ready (1991) and Finucane (2002) to determine 

directions of investors’ trading directions. If traders engage in systematic herding, the statistic 

should take significantly negative values, since the actual number of runs will be lower than 

                                                 
3
 The formula of runs is according to Mood (1940), but with non-trading adjustments. 
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expected. 
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Where ir  is the actual number of type i runs (up runs, down runs or zero runs), n is the total number of 

trades executed on asset j on day t, ½ is a discontinuity adjustment parameter and ip  is the 

probability of finding a type of run i. Under asymptotic conditions, the statistic ),,( tjix  has a 

normal distribution with zero mean and variance 

222 )1(3)1(),,( iiii pppptji −−−=σ   (5) 

So the herding intensity statistic is expressed as 
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which has an asymptotic distribution of N(0,1). Mood (1940) requires state variables to be 

independent and i.i.d. as well as continuously distributed. As realized transaction price of stock is 

discrete, ),,( tjiH  would have a non-normal distribution and critical values for testing the 

existence of herding would have to be constructed through bootstrapping the sample. 

The distribution of significant herding percentages, not reported here, suggest that intraday 

trading concentration is heavier in the opening interval. Table II gives the sizes of buy and sell 

orders, in lots of one thousand shares, for all days where herding is significant at 1%. The average 

order size at market close is much larger than in other periods. The ratios of average buy orders to 

average sell orders, for days when herding is significant at 1%, is slightly higher than for the entire 

period. Among investor types, buy-sell ratios are greater than 1 for all institutionals during days of 

herding, and the ratios for FII’s and Proprietary Dealers are higher than their counterpart in all 

periods. Looking further into the opening intervals, we find that overall buy-sell ratios during 

significant herding days are actually lower than the entire period. But for the closing interval, not 

only the ratios are generally higher than those in the opening interval, but those in significant 

herding days are also higher than in the entire period. This pattern coincides with intraday trading 

noise as both rise from open to close. If we look at stocks in the top and bottom return deciles, the 

buy-sell ratios are, as expected, higher in the top return decile. In the bottom return decile, buy-sell 
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ratios are in general lower than 1. Buy-sell ratios in the closing intervals are uniformly higher, 

around 20%, than in the opening intervals. Even for the bottom return decile, there appears to be a 

stronger, about 24% in magnitude, buying force near market close than right after market open. 

A model of trading concentration 

 VW proposed a model with two assets traded in two markets respectively. Measures of buyers 

and sellers of asset i are denoted by i

bµ  and i

sµ  respectively. For the buyers, there is a possibility 

of either enjoying the full value of the dividend flow or switching to a lower level with a Poisson 

rate of κ. Because buyers differ in their switching rates κ, they have different reservation values in 

the bargaining game. Investors are heterogeneous in their horizons, which are inversely related to 

the switching rates κ. More trading could be generated by shorter horizons as it reduces search 

times and trading costs. Switching rates could correspond to buyers’ characteristics, such as long 

horizon is more relevant to insurance companies, while shorter ones belong to hedge funds. A 

clientele equilibrium where market 1 is the one with the most sellers has the following properties: 

(a) More buyers and sellers in market 1: )(1 κµb  > )(2 κµb  and )(1 κµs  > )(2 κµs   

(b) Higher buyer-seller ratio in market 1: )(/)( 11 κµκµ sb  > )(/)( 22 κµκµ sb  

(c) Higher prices in market 1: )(1 κp  > )(2 κp  for all κ. 

Market 1 has not only more sellers than market 2, but also more buyers, and a higher buyer-seller 

ratio
4
. Moreover, the price that any given buyer expects to pay is higher in market 1. Since there are 

more sellers in market 1, buyers’ search times are shorter. Therefore, holding all else constant, 

buyers prefer entering into market 1. To restore equilibrium, prices in market 1 must be higher than 

in market 2. This is accomplished by higher buying pressure in market 1, i.e., higher buyer-seller 

ratio. In the resulting equilibrium, there is a clientele effect. Investors with high switching rates, 

who have a stronger preference for short search times, prefer market 1 despite the higher prices. On 

the other hand, low-switching-rate investors, who are more patient, value more the lower prices in 

market 2. The clientele effect is, in turn, what accounts for the larger measure of sellers in market 1 

since the high-switching-rate buyers turn faster into sellers. So in essence, cost characteristics of 

investors determine concentration of trading and prices, rather than information about the assets. 

Individual investors trading for own accounts with unleveraged funds are supposed to have 

                                                 
4
 Summary statistics from our data do indicated that average total buy orders, sell orders and their ratios of a stock in a 

given day are 498, 487 and 1.1035 respectively for days when herding measures are not significant. For days with 

significant herding measures, however, the corresponding figures are 3,281, and 1.4420 respectively. 



 10

lower switching rates and prefer market 2 in the model above. However, when market moves fast, 

lack of knowledge could elevate their switching rates so they turn to trade in market 1 instead. 

Naturally, there should be more herding from the individual and FII’s, according to prediction (a) 

and (b), especially at market open and close. If the ratio of number of buyer to that of seller 

contributes more to the buildup of trading noise, we would conclude that search cost, or the specific 

transaction cost, prevails in that occasion, and vice versa. In a quote-driven market setup, difference 

of composite buy and sell order price would be a good proxy for short term search cost too. 

Similarly, the time needed to fill a buy or sell order in a given period measures the cost of searching 

as well. 

A measure of order dispersion 

Limit order book dispersion can describe the tightness of the book by examining how far apart 

from each other (or from the midquote) the limit orders are placed in the book. It captures the execution 

price innovation expected by the limit order trader when he sacrifices demand of immediacy and instead 

provides liquidity to the market. Foucault, Kadam, and Kandel (2005) and Wei (2005) suggest that the 

limit order book dispersion is linked with the patience of limit order traders and the pick-off risk they 

face. We adopt the following measure by modifying the dispersion measure of Kang and Yeo (2008).  

The dispersion measure of stock i in a given day is defined as  
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where 
b

jDst is the price interval between the jth best buy order price and its next better order price, 

and similarly 
s

jDst  is that for the sell order price. The buy and sell price intervals, up to the fifth best 

limit orders are weighted by 
b

jw  and 
s

jw , the size of the corresponding buy or sell limit orders. For the 

whole market, transaction prices are used to compute the first price interval, while for each type of 

investors, average of buy and sell order price at each priority level is used instead. This dispersion 

measure is designed to show how clustered or dispersed the limit orders are in the book. It measures 

how tightly the orders are placed to each other or how closely they are to the midquote. The higher the 

dispersion is, the less tight the book is, and the lower amount of liquidity the limit order book provides. 

It is a well known fact in Taiwan that, due to funding liquidity, individual investors tend to hold 

and trade stocks with lower prices, while institutional investors concentrate more on high price stocks. 
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Therefore, 
b

jDst
 
and 

s

jDst
 
in (7) are computed using the raw price distance divided by tick size of 

the stock, so that only the relative price distance is used, allowing iDsp  to be comparable across stocks 

and various types of investors. 

 

III. Data and empirical results 

This study employs intra-day order book data from the Taiwan Stock Exchange starting from 

March 1
st
, 2005 to December 31

st
, 2006, covering stocks of 525 firms over a period of 461 trading 

days. Excluded from the complete pool of stocks listed on the exchange are those with irregularities 

and unusual exchange sanctions. As the Taiwan Stock Exchange would only release limit book data 

two years after an order or trade is realized, the data period the latest we could obtain. Each data 

record includes date, exact time in hours, minutes and seconds, stock code, price and quantity of all 

orders, filled or not, submitted during the data period. Individual stock returns, market 

capitalizations, daily turnover and price-book ratios are obtained from the Taiwan Economic Journal 

(TEJ) database. 

Each daily session is then divided further into 9 intervals between 9:00 AM and 1:30 PM, with 

30 minutes in each interval. As our data contains flags identifying each investor as either a 

proprietary dealer, an investment trust, a FII or an individual, we are able to extend our analysis 

according to investor types. Over the last ten years, percentages of trades in Taiwan stock market 

accounted for by FII’s have apparently grown much faster than the other two types of local 

institutionals. As a matter of fact, FII’S owns one third of the total market capitalization and account 

for one quarter of daily volume as of end of 2009 in Taiwan. On average, about 15% of the daily 

orders are submitted during the first half hour of a regular four and half hour trading session. In the 

last half hour period, the percentages range between 9% and 19%. Trading in other periods is 

usually slower than open and close. 

To construct the herding intensity measures required for our study, we begin by sorting the 

trades for each day (having excluded all those executed outside normal trading hours) by stock code 

and count the numbers of up and down runs of order prices submitted within a given day, as well as 

within each of the nine 30-minute intervals. We then compute herding statistic in the respective 

periods according to PS (2006). The definition (6) usually makes computed herding measures take 

on negative values. In computing PS herding measures, only the orders actually filled are included 

in the computation to avoid reporting unrealistic herding phenomenon. The computed daily herding 

measures in are larger in magnitudes than when they are computed intra-day, consistent with Dorn, 
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et at. (2008) which argued that herding measures should rise with length of period. For all and each 

type of investors, we bootstrapped their 1%, 5% and 10% critical values. Among all types of 

investors, FII’s exhibit the strongest herding behavior in the opening interval, followed by 

individuals and investment trusts. Herding of proprietary dealers is quite different from the other 

three types, peaking at mid-day sessions.  

After applying the decomposition scheme in (1) and we report in Table III the noise proportion 

in return volatility, for the entire day and each intraday interval, for all and each type of investors 

and across different degrees of trading concentration, rise from open to close, as in Hu (2006). 

However, when there is significant trading concentration, trading noise proportion could fall from 

open to close. We intend to identify possible factor driving trading noise. Does trading noise get 

heavier when market is extremely active? According to the argument of Hu (2006) and Stoll (2000), 

this general transaction cost should apply to everyone in the market, regardless of market 

capitalization of stocks or which trading hour it is. 

In order to explore the effects of trading concentration alone on noise in trading, we use the 

model below to see its influences. We perform a panel regression with generalized least squares 

random effect based on  

tktktk AHN ,,, εβα ++=
 

(8) 

where t=1,…,461 and k=1,…,525. A greater β in magnitude implies stronger noise is produced by 

more intensive herding activity. Table V gives the result of this model. Although the direction of β is 

consistent with its counterpart, with one lag, in Table IV, the distribution across intraday intervals 

and herding significance reveals a somewhat different implication. For the entire observations, the 

magnitudes of coefficients in general peak at mid-day, with the closing interval having the weakest 

coefficient. If we narrow the observations down to only those with significant herding at 10%, the 

magnitudes of coefficients fall by 50%. In another word, when trading is heavily concentrated, the 

degree of concentration contributes much less to trading noise. This is inconsistent with what we 

might want to conclude from Table IV. Trading concentration possibly prevents noise from going up. 

When trading is not heavy, it affects noise more, but not otherwise. 

Lin, Tsai and Sun (2010) argued that trading concentration is closely related to the search cost 

model of VW. We intend to find out how, if any, search motive may affect noise in trading on an 

intraday level with the follow model,  

tktktktktktk BSRSFTBFTSpreadN ,,4,3,2,1, εγγγγα +++++=  (9) 

where t=1,…,461 and k=1,…,525. We performed a panel regression with generalized least squares 
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random effect. Implications of estimated parameters are as follows. The spread effect of search cost 

is proxied by BSD, the average price difference within the period of interest for buy and sell orders 

associated with transaction prices on a given stock. The search times of buy and sell orders are 

proxied by, BFT and SFT respectively. The former is the Ave. time to fill a buy order within the 

period of interest, while the latter is that to fill a sell order. A particular transaction price could 

correspond to more than one orders placed at different times. BSR is the ratio between total buy and 

sell orders for a given stock on a given day. A greater γ1 implies stronger noise is accompanied by 

larger order price spreads, suggesting a weaker search cost effect. Greater γ2 and γ3 imply a stronger 

noise is induced by a longer search time for an equilibrium price, suggesting a stronger the search 

cost effect. A greater γ4 in magnitude implies stronger noise is accompanied by higher buyer-seller 

ratios, indicating VW search model drives trading noise. The results of this model are given in Table 

V, rendering more insight in an intraday dimension. The bottom panel of Table IV shows that 

trading noise is much less likely to be driven by search cost when trading concentrates, and the 

weakest tie between noise and search cost happens at market close. This implies that trading noise 

is more compatible with a situation where not all market participants are bearing the transaction 

cost of noise. The estimation for time-to-fill and buy-sell ratio both supports the notion above. 

 Table VI reports the summary statistics of the order dispersion measure. iDsp
 
at each 

intraday interval, for the whole market or various types of investors, is achieved by first subtracting 

the daily measure and then dividing by it, which assures comparability across investor type. So the 

reported figures in Table V give for the whole market or each type of investor the relative extent of 

dispersion of the respective interval. It is apparent that order price dispersion goes down uniformly 

regardless or investor type. The dispersion of individual investor, however, exhibits the highest 

fluctuation. It is not only substantially higher than the other two types at market open, but is also 

much lower at market close. Order price of foreign institutional investors has the smallest 

dispersion swing, showing the lowest dispersion at market open and the highest dispersion at 

market close. The results in Table VI suggests that individual investors may have enjoyed the 

relatively lower search cost, and therefore producing more conservative order price pattern, at 

market open but the highest liquidity pressure at market close. If information is the cause of this 

distribution, we would expect to see a U-shaped pattern. 

 To determine factors that could have influenced order price dispersion, and hence the 

distribution pattern in Table VI, we chose turnover ratio, holdings and trading volume of foreign 

and domestic institutional investors to see how they affect trading noise. Specifically, we apply the 

following model on our data, 
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tktktktktktktktk VolDIVolFIIShareDIShareFIITODITOFIIN ,,6,5,4,3,2,1, ______ εγγγγγγα +++++++=  (10) 

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments 

on residuals. Results for the entire market are reported in Table VII, which shows that for low-cap 

stocks trading noise is influenced only, and positively, by institutional holdings. But for high-cap 

stocks, trading noise is affected by all six factors. But the effect of institutional holdings is negative, 

while that of FII trading volume is positive. This indicates that the rare case of high institutional 

holding of a certain small-cap stock causes difficulty in trading that specific stock and hence induce 

higher trading noise there. However, in large-cap stocks which institutionals favor, higher turnover 

caused by larger holding actually reduces trading noise for these investors. 

Applying (10) for different types of investors, we could only report in Table VIII results for 

FII’s and individuals, as the model for domestic institutional does not pass the validation test. For 

FII’s, only results for the largest market capitalization are available, and reported at the bottom 

panel, as there are not enough orders submitted for the other four levels. They are similar to the 

results for large-cap in Table VII in that trading noise is reduced by turnover ratio. But FII holding 

and trading volume contributes positively to the build-up of trading noise. In the case of individuals, 

the results are quite apart from those for FII’s, suggesting institutional turnover of a given stock 

somehow induces trading noise for individuals, especially in large-cap stocks. In small-cap stocks, 

institutional turnover is not influential, probably because institutional investors hold and trade less 

in this category. 

The results of VII and VIII provide us a preliminary basis for the exploration of factors driving 

trading liquidity. Information may not be the main cause behind the observed facts, as large-cap 

should have the best information quality among all. So we take a further look at the effect of order 

price dispersion on trading noise. The following model is considered for this purpose, 

tktktk DspN ,,1, εγα ++=  (11) 

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments 

on residuals and reported in Table IX. Similar to the previous models, the model for domestic 

institutional does not pass the validation test again and only results for the largest market 

capitalization are available for FII’s. For FII’s dispersion suppresses trading noise significantly 

except for the first intraday interval. For the individuals, however, dispersion elevates trading noise 

except for the first intraday interval regardless of market capitalizations. The exact mirror type 

pattern that distinguish FII’s from individuals validates the distribution pattern of Table VI, 

supporting notion that low search cost for individuals at market open induces heavy trading and 
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noise. For FII’s, aggressive order price pattern, or lower dispersion, just produces lower trading 

noises at market open. In other intraday intervals, only more aggressive order price pattern would 

produce greater trading noise, confirming the findings of Table V.  

 

 

IV. Conclusion 

This study examines intra-day order book data to study trading noise within stock volatility, 

particularly when trading is heavy, and its driving factors. We adopted a measure of trading 

concentration specifically ideal for high frequency data. The measure is not only constructed on a 

daily level, but also within intra-day time intervals. Although the analysis in the study is still 

preliminary, we have found strong evidences against the idea of trading being a general transaction 

cost, or a friction in market trading. Specifically, we found that trading noise on an intraday level, 

although tend to increase from market open to close, is less likely to take place when trading is 

concentrated at market close. If trading noise is not compatible with phenomena observed during 

heavy trading, then it may not be a general transaction cost. It somewhat explains why noise does 

not respond to heavy trading as much as to all trades when we examine the market as a whole. 

Trading noise is just a specific transaction cost, as information cost, prominent at certain aspect in 

the market. 

Although this noise is high on individual orders and low on institutional orders, its behavior at 

market open is entirely different from the rest of the day. Noises for small cap stocks, unlike 

volatilities, are lower than those for large cap stocks. We also found that noise relates positively to 

trading volume, but inversely to holdings and turnover ratio of institutional investors. Trading noise 

is also found to be sensitive to only certain investors, at certain trading hour and for stocks of 

certain market capitalization, in the market when they trade heavily. Responses from institutional 

and individuals are quite the opposite. The noise proportion generated by individual order rises with 

institutional turnover and search cost encountered, while that of institutional order behaves just 

oppositely. At market open, behaviors of noise from institutional and individual orders just switch 

mutually, and then switch back afterwards. Also, noise from high-cap stocks is actually more 

responsive than that from low-cap ones across investors. So trading noise is a specific transactions 

cost, prominent to only certain investors, at certain time and for certain stocks in the market, rather 

than a general market friction as argued in Stoll (2000). This transactions cost is inversely related to 

search costs encountered in trading, which depends on investor, trading hour of day and market 

capitalization of stocks. 



 16

Although we have presented valid arguments regarding the central issue of this study, there are 

areas yet to be worked on. We have to investigate further behavior of trading noise and its 

distribution among investors. Other analysis, such as trading motives of investors, evidence on 

sequence or development of trading concentration and the dynamics of trading noise need to be 

added to the current model as well.  
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Table I  Noise as Proportion of Stock Returns by Market Capitalization and Intraday Interval 

 Averaged across 525 firms and over 461 days 

  
9:00~9:30  9:30~10:00  10:00~10:30 10:30~11:00 11:00~11:30 11:30~12:00 12:00~12:30 12:30~13:00 13:00~13:30 all day  

MV1*  
Noise Ratio 0.342278  0.349138  0.351538  0.353061  0.353678  0.353752  0.353574  0.35327  0.350522  0.346329  

Volatility  2.94E-06  2.04E-06  1.89E-06  1.83E-06  1.82E-06  1.87E-06  1.87E-06  1.90E-06  2.28E-06  2.06E-06  

MV2  
Noise Ratio 0.299264  0.306318  0.309945  0.310761  0.312009  0.31237  0.311695  0.311612  0.308912  0.301522  

Volatility  5.31E-06  3.48E-06  3.17E-06  3.06E-06  2.98E-06  3.19E-06  3.10E-06  3.10E-06  3.71E-06  3.46E-06  

MV3  
Noise Ratio 0.312762  0.31705  0.318713  0.320591  0.319912  0.320309  0.320878  0.321037  0.318995  0.310814  

Volatility  7.03E-06  4.61E-06  4.15E-06  3.98E-06  3.84E-06  4.23E-06  3.95E-06  4.04E-06  4.93E-06  4.51E-06  

MV4  
Noise Ratio 0.265489  0.270462  0.273346  0.273981  0.274287  0.272752  0.274185  0.274522  0.27341  0.262707  

Volatility  7.94E-06  4.99E-06  4.35E-06  4.16E-06  4.08E-06  4.93E-06  4.17E-06  4.32E-06  5.33E-06  4.93E-06  

MV5  
Noise Ratio 0.273087  0.276788  0.279308  0.279894  0.279174  0.278379  0.279982  0.279452  0.279812  0.268396  

Volatility  8.75E-06  5.54E-06  4.84E-06  4.51E-06  4.61E-06  5.38E-06  4.63E-06  4.73E-06  5.74E-06  5.44E-06  

MV6  
Noise Ratio 0.267541  0.269733  0.272056  0.270965  0.271129  0.27107  0.27164  0.273007  0.273653  0.260174  

Volatility  1.10E-05  6.86E-06  5.83E-06  5.65E-06  5.60E-06  6.40E-06  5.60E-06  5.78E-06  7.18E-06  6.71E-06  

MV7  
Noise Ratio 0.275499  0.275677  0.277627  0.276941  0.276011  0.276052  0.275425  0.278486  0.280638  0.264206  

Volatility  1.38E-05  8.78E-06  7.43E-06  7.32E-06  6.88E-06  8.01E-06  6.98E-06  7.10E-06  8.90E-06  8.41E-06  

MV8  
Noise Ratio 0.253431  0.255456  0.257726  0.260689  0.259907  0.258176  0.259207  0.259522  0.259299  0.242237  

Volatility  1.59E-05  1.00E-05  8.39E-06  7.94E-06  7.76E-06  8.81E-06  7.60E-06  8.11E-06  1.01E-05  9.56E-06  

MV9  
Noise Ratio 0.266264  0.268133  0.269037  0.266463  0.27026  0.264406  0.26723  0.267985  0.270713  0.25229  

Volatility  2.00E-05  1.29E-05  1.11E-05  1.03E-05  1.02E-05  1.11E-05  9.99E-06  1.02E-05  1.31E-05  1.21E-05  

MV10  
Noise Ratio 0.282314  0.280608  0.281831  0.283886  0.281262  0.279193  0.280412  0.282529  0.282901  0.264302  

Volatility  3.37E-05  2.24E-05  1.87E-05  1.77E-05  1.73E-05  1.64E-05  1.65E-05  1.71E-05  2.14E-05  2.04E-05  

* MV1 denotes the decile containing stocks with the largest market capitalization. 
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Table II  Daily and Intra-day Buy and Sell Orders, All Days and When Herding Is Significant at 1% 

By Investor Type 

Investor Type 

9:00~9:30 13:00~13:30 All Day 

All days Days when herding 

is significant at 1% 

All days Days when herding 

is significant at 1% 

All days Days when herding 

is significant at 1% 

 Ave. buy 

orders per 

lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders per 

lot 

Ave. buy 

orders per 

lot 

Ave. sell 

orders per 

lot 

All Stocks 

All 14.19  14.24  15.09  18.33  19.92  18.07  22.82  18.53  8.50  8.45  9.64  9.56  
Proprietary Dealers 29.77  24.81  68.96  15.11  23.37  25.39  26.57  19.69  21.66  22.17  26.22  8.61  
Investment Trusts 41.53  31.41  56.62  29.49  31.58  27.62  66.09  53.32  28.68  25.34  13.77  12.88  
FII’s 27.12  26.18  43.95  25.22  69.19  59.72  130.17 26.60 17.10  17.34  14.05  12.39  
Individual 10.54  11.12  10.05  22.82  9.76  10.18  9.66  17.31  7.29  7.36  7.02  7.67  
 Top Stock Return Decile 

All 5.43  5.24  6.46  5.87  5.67  5.29  7.15  5.65  5.44  5.28  5.99  5.96  
Proprietary Dealers 17.95  15.20  6.36  12.28  11.91  12.60  9.25  12.80  14.96  14.39  6.49  5.33  
Investment Trusts 25.99  17.91  25.48  18.95  22.56  17.95  14.28  5.22  19.33  16.13  11.66  11.08  
FII’s 7.93  6.76  4.73  3.95  13.30  12.61  5.88  4.24  7.52  7.06  4.28  3.90  
Individual 5.02  4.95  5.47  5.32  5.00  4.83  3.00  3.07  5.02  4.94  5.18  5.33  
 Bottom Stock Return Decile 

All 10.81  10.64  15.53  13.06  12.39  12.39  18.76  12.67  10.53  10.85  10.17  12.83  
Proprietary Dealers 32.68  31.13  34.55  20.14  26.12  29.81  56.59  37.77  25.82  28.30  31.04  12.15  
Investment Trusts 58.67  46.06  180.25  24.81  41.04  31.32  45.81  56.36  39.80  34.26  14.58  13.49  
FII’s 18.88  18.87  19.95  6.95  45.79  46.07  39.87  42.69  20.61  20.84  18.02  10.53  
Individual 10.22  9.98  12.58  12.53  9.92  10.18  9.35  10.77  9.64  9.91  8.64  10.71  

 

In thousand shares 
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Table III  Noise as Proportion of Stock Returns by Herding Significance 

 Averaged across 525 firms and over 495 days 

 

Significance All Day 
9:00~    

9:30 

9:30~  

10:00 

10:00~ 

10:30 

10:30~ 

11:00 

11:00~ 

11:30 

11:30~ 

12:00 

12:00~ 

12:30 

12:30~ 

13:00 

13:00~ 

13:30 

All Investors 

1% 0.3242 0.2718 0.3010 0.3082 0.3183 0.3161 0.3122 0.3144 0.3162 0.3066 

5% 0.2981 0.2651 0.2833 0.2918 0.2972 0.2995 0.2984 0.2970 0.2957 0.2944 

10% 0.2916 0.2678 0.2816 0.2880 0.2929 0.2958 0.2944 0.2949 0.2924 0.2943 

Proprietary Dealers 

1% 0.2977 0.2467 0.2462 0.2557 0.2791 0.2822 0.2973 0.3038 0.3349 0.3206 

5% 0.3144 0.2624 0.2822 0.3006 0.3082 0.2957 0.3253 0.3101 0.3165 0.3036 

10% 0.3144 0.2705 0.2849 0.3056 0.3031 0.3076 0.3304 0.3205 0.3187 0.3017 

Investment Trusts 

1% 0.2751 0.1924 0.2358 0.2688 0.2456 0.2773 0.2862 0.2736 0.2778 0.2861 

5% 0.2602 0.2042 0.2429 0.2583 0.2573 0.2675 0.2758 0.2774 0.2870 0.2917 

10% 0.2581 0.2118 0.2410 0.2554 0.2570 0.2673 0.2729 0.2737 0.2805 0.2873 

FII’s 

1% 0.3067 0.2766 0.3084 0.3100 0.3214 0.3166 0.3217 0.3224 0.3218 0.3215 

5% 0.3098 0.2968 0.3099 0.3158 0.3205 0.321 0.3241 0.3211 0.3198 0.3192 

10% 0.3136 0.305 0.3153 0.3188 0.3200 0.3241 0.325 0.3217 0.3224 0.3224 

Individuals 

1% 0.3387 0.2855 0.3129 0.3212 0.3268 0.3294 0.3291 0.3336 0.3383 0.3346 

5% 0.3030 0.2703 0.2871 0.2964 0.3006 0.3011 0.3016 0.3044 0.3037 0.3050 

10% 0.2926 0.2703 0.2837 0.2885 0.2939 0.2959 0.2947 0.2969 0.2959 0.2992 
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Table IV  Effects of Herding on Noise in Panel Regression 

 Intraday Intervals 

In order to explore the effects of trading concentration alone on trading noise, we use the model below to 

see what could have influenced noise. We performed a panel regression with generalized least squares 

random effect based on  

tktktk AHN ,,, εβα ++=  

where t=1,…,495 and k=1,…,525. A greater β in magnitude implies stronger noise is produced by more 

intensive herding activity.  

 

Intraday interval β (x100) No of obs. 

   

All days 

 9:00-9:30 -1.32(0.0128)*** 222,711 

 9:30-10:00 -1.21(0.0140)*** 217,529 

 10:00-10:30 -1.34(0.0153)*** 213,436 

 10:30-11:00 -1.45(0.0161)*** 209,637 

 11:00-11:30 -1.53(0.0168)*** 206,076 

 11:30-12:00 -1.59(0.0170)*** 202,803 

 12:00-12:30 -1.56(0.0173)*** 202,750 

 12:30-13:00 -1.30(0.0166)*** 208,049 

 13:00-13:30 -0.98(0.0161)*** 222,387 

   

Days when herding is significant at 10% 

 9:00-9:30 -0.25(0.0128)*** 22,298 

 9:30-10:00 -0.45(0.0140)*** 21,815 

 10:00-10:30 -0.62(0.0153)*** 21,402 

 10:30-11:00 -0.79(0.0161)*** 20,944 

 11:00-11:30 -0.83(0.0168)*** 20,650 

 11:30-12:00 -0.85(0.0170)*** 20,416 

 12:00-12:30 -0.86(0.0173)*** 20,464 

 12:30-13:00 -0.74(0.0166)*** 20,959 

 13:00-13:30 -0.54(0.0161)*** 22,497 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table V  Effects of Search Cost on Noise in Panel Regression 

 Intraday Intervals 

To explore the effects of search motive on trading noise on an intraday level, we use the model below to see what 

could have influenced noise. We performed a panel regression with generalized least squares random effect based 

on  

tktktktktktk BSRSFTBFTSpreadN ,,4,3,2,1, εγγγγα +++++=  

where t=1,…,495 and k=1,…,525. Implications of estimated parameters are similar to those detailed the illustration 

of Table IV.  

 

Intraday interval γ1 (x100) γ2 (x1000) γ3 (x1000) γ4 (x100) No. of obs. 

      

All days 

 9:00-9:30 -3.810(0.028)*** 0.070.003)*** 0.010(0.000)*** -0.680(0.029)*** 222,711 

 9:30-10:00 -2.090(0.035)*** -0.012(0.001)*** -0.026(0.000)*** 1.420(0.032)*** 217,529 

 10:00-10:30 -1.600(0.038)*** -0.016(0.001)*** -0.022(0.000)*** 1.620(0.032)*** 213,436 

 10:30-11:00 -1.260(0.040)*** -0.012(0.001)*** -0.015(0.000)*** 1.690(0.031)*** 209,637 

 11:00-11:30 -1.000(0.041)*** -0.010(0.000)*** -0.014(0.000)*** 1.720(0.031)*** 206,076 

 11:30-12:00 -0.740(0.041)*** -0.008(0.000)*** -0.012(0.000)*** 1.850(0.029)*** 202,803 

 12:00-12:30 -0.600(0.041)*** -0.009(0.000)*** -0.010(0.000)*** 2.030(0.032)*** 202,750 

 12:30-13:00 -0.710(0.040)*** -0.010(0.000)*** -0.009(0.000)*** 2.210(0.034)*** 208,049 

 13:00-13:30 -0.520(0.038)*** -0.011(0.000)*** -0.011(0.000)*** -1.890(0.049)*** 223,711 
      

Days when herding is significant at 10% 

 9:00-9:30 4.470(0.028)*** 0.261(0.003)*** -0.218(0.003)*** 0.540(0.173)** 22,298 

 9:30-10:00 10.340(0.035)*** -0.040(0.001)** -0.094(0.008)*** 0.030(0.144) 21,815 

 10:00-10:30 10.590(0.038)*** -0.004(0.010) -0.051(0.006)*** -0.120(0.179) 21,402 

 10:30-11:00 11.450(0.040)*** 0.000(0.008) -0.033(0.005)*** -0.130(0.164) 20,944 

 11:00-11:30 12.270(0.041)*** -0.016(0.006)** -0.027(0.004)*** -0.130(0.128) 20,650 

 11:30-12:00 12.190(0.041)*** -0.008(0.005)* -0.026(0.004)*** -0.110(0.167) 20,416 

 12:00-12:30 13.440(0.041)*** -0.013(0.004)*** -0.024(0.003)*** -0.150(0.175) 20,464 

 12:30-13:00 13.290(0.040)*** -0.019(0.004)*** -0.024(0.002)*** -0.380(0.201)* 20,959 

 13:00-13:30 13.220(0.038)*** -0.020(0.003)*** -0.025(0.001)*** -0.610(0.208)*** 22,497 
1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table VI  Dispersion of Order Book up to the Fifth Best Orders 

 relative to daily average, across 525 firms and over 461 days 

The dispersion measure of stock i in a given day is defined as  
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where 
b

jDst is the price interval between the jth best buy order price and its next better order price, and 

similarly 
s

jDst  is that for the sell order price. The buy and sell price intervals, up to the fifth best limit 

orders are weighted by 
b

jw  and 
s

jw , the size of the corresponding buy or sell limit orders. For the whole 

market, transaction prices are used to compute the first price interval, while for each type of investors, 

average of buy and sell order price at each priority level is used instead. The measure is designed to show 

how clustered or dispersed the limit orders are in the book. It measures how tightly the orders are placed to 

each other or how closely they are to the midquote and shows the competitiveness between the limit order 

traders. The higher the dispersion is, the less tight the book is, and the lower amount of liquidity the limit 

order book provides.  
 

 

Intraday 

Intervals 

Whole 

Market 

Domestic  

Institutionals  

Foreign 

Institutionals  
Individuals  

 09:00-09:30 6.55% 0.99% 0.12% 14.10% 

 09:30-10:00 1.87% 0.19% 0.05% 2.17% 

 10:00-10:30 -0.24% 0.11% 0.03% -0.19% 

 10:30-11:00 -1.24% 0.06% 0.00% -1.27% 

 11:00-11:30 -2.13% 0.01% -0.01% -2.23% 

 11:30-12:00 -2.76% 0.00% -0.03% -2.90% 

 12:00-12:30 -3.28% 0.00% -0.06% -3.47% 

 12:30-13:00 -3.61% 0.04% -0.05% -3.91% 

 13:00-13:30 -3.81% -0.90% -0.04% -4.28% 
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Table VII  Effects of Stock Characteristics on Noise in Panel Regression 

 Whole Market, by Market Caps 

To explore the effects of search motive on trading noise on an intraday level, we use the model below to see what 

could have influenced noise. We performed a panel regression with generalized least squares random effect based 

on  

tktktktktktktktk VolDIVolFIIShareDIShareFIITODITOFIIN ,,6,5,4,3,2,1, ______ εγγγγγγα +++++++=  

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments on residuals. 

 

Intraday 

interval 

γ1 (x100) γ2 (x1000) γ3 (x10) γ4 (x10) γ5 (x10
5
) γ6(x10

5
) 

Smallest Market Caps  

 9:00-9:30 -1.43(0.59)* -0.21(0.68) 0.49(0.23)** -7.38(1.67)*** -2.06(0.72)** 0.52 (1.03) 

 9:30-10:00 -0.43(0.29) -0.86(0.68) 0.51(0.21)** -11.32(1.65)*** -0.39(0.75)** 0.69 (1.09) 

 10:00-10:30 -0.38(0.32)* -1.31(0.81) 0.18(0.22) -12.41(1.67)*** 2.20(0.78)** 1.98 (1.13)* 

 10:30-11:00 -0.42(0.36)* -1.57(0.94)* 0.50(0.26)** -10.87(1.86)*** 0.42(1.31) 0.80 (1.18) 

 11:00-11:30 -0.65(0.32)** -1.16(0.85) 0.61(0.24)** -11.51(1.84)*** 0.90(1.39) -0.09 (1.20) 

 11:30-12:00 0.25(0.30) 0.06(0.84) 0.21(0.22) -11.27(1.71)*** -1.06(0.87)** 0.73 (1.22) 

 12:00-12:30 -0.44(0.33) 0.07(0.90) 0.39(0.24) 12.50(1.85)*** 1.88(1.47) 0.86 (1.23) 

 12:30-13:00 -0.12(0.39) -0.86(0.87) 0.88(0.24)*** -10.13(1.65)*** 1.54(1.49) 0.65 (1.21) 

 13:00-13:30 -0.02(0.28) 0.15(0.69) 0.84(0.21)** -10.17(1.71)*** 0.39(0.78)** 1.34 (1.04) 

       

 Middle Market Caps 

 9:00-9:30 -0.18(0.17) -0.56(0.64) -1.38(0.09)*** -8.37(0.23)*** -0.09(0.06) -0.23 (0.08)** 

 9:30-10:00 -0.27(0.17) 0.05(0.69) -1.30(0.09)*** -7.96(0.22)*** 0.02(0.07) 0.16 (0.08)** 

 10:00-10:30 -0.31(0.31) -0.12(0.65) -1.36(0.16)*** -7.30(0.36)*** -0.46(0.31) 1.07 (0.22)** 

 10:30-11:00 0.03(0.22) 0.71(0.87) -1.38(0.10)*** -7.45(0.23)*** 0.10(0.09) 0.28 (0.10)** 

 11:00-11:30 -0.30(0.25) -0.70(0.91) -1.15(0.11)*** -7.23(0.22)*** 0.02(0.09) 0.34 (0.11)*** 

 11:30-12:00 -0.41(0.24) 0.10(0.90) -1.15(0.010)*** -7.56(0.23)*** 0.02(0.09) 0.40 (0.11)*** 

 12:00-12:30 -0.34(0.23) 0.09(1.00) -1.08(0.10)*** -6.62(0.22)*** 0.02(0.10) 0.17 (0.11)** 

 12:30-13:00 -0.29(0.22) 1.35(0.81)* -1.40(0.10)*** -7.36(0.23)*** -0.01(0.08) 0.18 (0.10)** 

 13:00-13:30 -0.51(0.18)** 1.21(0.75) -1.55(0.09)*** -7.50(0.22)*** -0.12(0.08) 0.13 (0.09)** 

       

 Largest Market Caps 

 9:00-9:30 -12.51(1.59)*** -5.87(1.38)*** -3.15(0.06)*** -16.89(0.42)*** 0.03(0.00)*** -0.14 (0.01)*** 

 9:30-10:00 -12.00(1.79)*** -3.00(1.35)*** -3.06(0.06)*** -16.45(0.38)*** 0.04(0.00)*** -0.07 (0.01)*** 

 10:00-10:30 -11.59(1.82)*** -2.29(1.37)* -3.14(0.06)*** -16.16(0.38)*** 0.05(0.00)*** -0.05 (0.02)*** 

 10:30-11:00 -13.59(1.98)*** -3.37(1.51)** -3.22(0.06)*** -16.28(0.38)*** 0.06(0.00)*** -0.01 (0.01) 

 11:00-11:30 -18.71(2.16)*** -3.14(1.71)*** -3.20(0.06)*** -15.80(0.37)*** 0.06(0.00)*** -0.04 (0.02)** 

 11:30-12:00 -13.56(2.17)*** -5.16(1.68)** -3.12(0.06)*** -16.00(0.35)*** 0.06(0.00)*** -0.04 (0.02)*** 

 12:00-12:30 -15.65(1.14)*** -3.32(1.57)** -3.04(0.06)*** -16.05(0.36)*** 0.06(0.00)*** -0.06 (0.02)*** 

 12:30-13:00 -16.87(2.03)*** -3.52(1.51)** -2.97(0.06)*** -16.77(0.37)*** 0.05(0.00)*** -0.02 (0.01)** 

 13:00-13:30 -12.04(1.82)*** -6.11(1.48)*** -3.02 (0.06)*** -17.46(0.39)*** 0.04(0.00)*** -0.05 (0.02)** 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table VIII  Effects of Stock Characteristics on Noise in Panel Regression 

Foreign Institutional and Individual Investors, by Market Caps 

To explore the effects of search motive on intraday trading noise, we use the model below to see what could have 

influenced noise. We performed a panel regression with generalized least squares random effect based on  

tktktktktktktktk VolDIVolFIIShareDIShareFIITODITOFIIN ,,6,5,4,3,2,1, ______ εγγγγγγα +++++++=  

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments on residuals.  

 

Intraday 

interval 

γ1 (x100) γ2 (x1000) γ3 (x10) γ4 (x10) γ5 (x10
5
) γ6(x10

5
) 

Smallest Market Caps - Individuals  

 9:00-9:30 -0.31(0.41) 2.73(1.67) 3.07(0.80)*** 52.56(4.20)*** 3. 40(1.42)** 13.19(2.25)*** 

 9:30-10:00 0.70(0.41) 2.53(1.70) 3.04(0.73)*** 34.44(3.76)*** 6. 71(1.47)*** 23.10(2.23)*** 

 10:00-10:30 0.79(0.38)** -1.68(1.72) 3.18(0.63)*** 24.33(3.61)*** 5. 77(1.60)*** 30.63(2.37)*** 

 10:30-11:00 0.68(0.38)* -0.20(1.66) 2.89(0.55)*** 22.73(3.39)*** 8. 50(1.77)*** 24.15(2.30)*** 

 11:00-11:30 0.15(0.33) -0.44(1.67) 2.12(0.50)*** 18.66(3.29)*** 6. 67(1.62)*** 27.45(2.23)*** 

 11:30-12:00 -1.12(1.18) -3.25(1.58)** 2.76(0.53)*** 16.60(3.22)*** 23.40(2.88)*** 26.13(2.23)*** 

 12:00-12:30 0.19(0.46) 0.98(1.60) 1.40(0.46)*** 17.35(3.12)*** 20.24(2.85)*** 19.13(2.18)*** 

 12:30-13:00 1.92(0.43)*** -0.06(1.70) 1.57(0.52)*** 15.82(3.04)*** 6. 07(1.63)*** 23.54(2.21)*** 

 13:00-13:30 0.36(0.32) 3.02(1.44)** 1.30(0.61)*** 38.19(3.69)*** 7. 41(1.48)*** 21.63(2.02)*** 

 
Middle Market Caps - Individuals 

 9:00-9:30 -16.59(3.91)*** -35.20(6.51)*** 14.27(0.15)*** -6.67(0.50)*** 0.93(0.02)*** 0.27 (0.07)*** 

 9:30-10:00 -16.77(3.58)*** -28.03(6.05)*** 12.77(0.14)*** -4.62(0.45)*** 0.94(0.02)*** 0.27 (0.07)*** 

 10:00-10:30 -21.46(4.27)*** -40.98(7.84)*** 12.58(0.15)*** -4.88(0.49)*** 0.91(0.02)*** 0.36 (0.07)*** 

 10:30-11:00 -20.68(4.53)*** -54.41(8.89)*** 12.73(0.15)*** -5.45(0.53)*** 0.91(0.02)*** 0.47 (0.07)*** 

 11:00-11:30 -18.50(4.50)*** -60.18(9.88)*** 12.85(0.15)*** -6.52(0.55)*** 0.86(0.02)*** 0.53 (0.08)*** 

 11:30-12:00 -13.18(4.29)*** -50.76(10.1)*** 13.56(0.16)*** -6.75(0.55)*** 0.85(0.02)*** 0.43 (0.08)*** 

 12:00-12:30 -19.24(4.98)*** -25.24(6.38)*** 13.90(0.16)*** -6.74(0.59)*** 0.88(0.02)*** 0.51 (0.08)*** 

 12:30-13:00 -16.03(4.70)*** -31.21(7.16)*** 14.79(0.16)*** -6.66(0.57)*** 0.84(0.02)*** 0.55 (0.08)*** 

 13:00-13:30 -13.56(3.30)*** -18.56(4.57)*** 13.49(0.13)*** -5.30(0.40)*** 0.85(0.02)*** 0.27 (0.06)*** 

 
Largest Market Caps – Foreign Intitutionals 

 9:00-9:30 8.74 (3.77)** 7.10(3.60)** 0.07(0.06) -1.94(0.20)*** 0. 09(0.01)*** -0.06(0.03)* 

 9:30-10:00 21.56(4.12)*** 16.95(3.97)*** 0.66(0.08)*** 0.55(0.24)** 0. 07(0.01)*** 0.11(0.03)*** 

 10:00-10:30 36.12(4.64)*** 18.05(4.41)*** 1.07(0.10)*** 1.82(0.29)*** 0. 09(0.01)*** 0.25(0.04)*** 

 10:30-11:00 51.96(5.20)*** 19.61(4.81)*** 1.61(0.11)*** 3.70(0.33)*** 0. 11(0.01)*** 0.40(0.04)*** 

 11:00-11:30 63.50(5.48)*** 24.13(4.94)*** 1.98(0.12)*** 4.48(0.37)*** 0. 14(0.01)*** 0.55(0.04)*** 

 11:30-12:00 77.99(5.90)*** 35.91(5.06)*** 2.32(0.12)*** 5.06(0.38)*** 0. 15(0.01)*** 0.61(0.04)*** 

 12:00-12:30 75.48(5.81)*** 37.05(5.01)*** 2.26(0.12)*** 5.30(0.39)*** 0. 16(0.01)*** 0.65(0.05)*** 

 12:30-13:00 61.27(5.41)*** 29.05(4.65)*** 1.76(0.11)*** 2.73(0.35)*** 0. 11(0.01)*** 0.43(0.04)*** 

 13:00-13:30 30.35 (4.68)*** 8.31(4.21)** 0.87(0.08)*** 0.35(0.26) 0. 09(0.01)*** 0.19(0.04)*** 

 
Largest Market Caps - Individuals 

 9:00-9:30 8.74 (3.77)** 7.10(3.60)** 0.07(0.06) -1.94(0.20)*** 0. 09(0.01)*** -0.06(0.03)* 

 9:30-10:00 21.56(4.12)*** 16.95(3.97)*** 0.66(0.08)*** 0.55(0.24)** 0. 07(0.01)*** 0.11(0.03)*** 

 10:00-10:30 36.12(4.64)*** 18.05(4.41)*** 1.07(0.10)*** 1.82(0.29)*** 0. 09(0.01)*** 0.25(0.04)*** 

 10:30-11:00 51.96(5.20)*** 19.61(4.81)*** 1.61(0.11)*** 3.70(0.33)*** 0. 11(0.01)*** 0.40(0.04)*** 

 11:00-11:30 63.50(5.48)*** 24.13(4.94)*** 1.98(0.12)*** 4.48(0.37)*** 0. 14(0.01)*** 0.55(0.04)*** 

 11:30-12:00 77.99(5.90)*** 35.91(5.06)*** 2.32(0.12)*** 5.06(0.38)*** 0. 15(0.01)*** 0.61(0.04)*** 

 12:00-12:30 75.48(5.81)*** 37.05(5.01)*** 2.26(0.12)*** 5.30(0.39)*** 0. 16(0.01)*** 0.65(0.05)*** 

 12:30-13:00 61.27(5.41)*** 29.05(4.65)*** 1.76(0.11)*** 2.73(0.35)*** 0. 11(0.01)*** 0.43(0.04)*** 

 13:00-13:30 30.35 (4.68)*** 8.31(4.21)** 0.87(0.08)*** 0.35(0.26) 0. 09(0.01)*** 0.19(0.04)*** 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table IX  Effects of Stock Characteristics on Noise in Panel Regression 

Foreign Institutional and Individual Investors, by Market Caps 

To explore the effects of search motive on trading noise on an intraday level, we use the model 

below to see what could have influenced noise. We performed a panel regression with 

generalized least squares random effect based on  

tktktk DspN ,,1, εγα ++=  with 
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and t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments 

on residuals.  

 

Intraday interval FII’s Individuals 

 γ1 (x1000) No. of Obs. γ1 (x100) No. of Obs. 

     

Smallest Market Caps 

 9:00-9:30   -1.67(0.23)***  34,016 

 9:30-10:00   -0.93(0.36)***  30,295 

 10:00-10:30   3.08(0.48)***  27,200 

 10:30-11:00   5.24(0.78)***  24,886 

 11:00-11:30   5.05(0.58)***  22,835 

 11:30-12:00   7.11(0.63)***  21,360 

 12:00-12:30   6.80(0.60)***  20,936 

 12:30-13:00   6.97(0.51)***  23,243 

 13:00-13:30   5.31(0.32)***  34,183 

     

Middle Market Caps 

 9:00-9:30   -2.44(0.40)***  44,497 

 9:30-10:00   1.34(0.63)**  45,936 

 10:00-10:30   8.56(0.82)***  43,296 

 10:30-11:00   17.00(0.92)***  42,194 

 11:00-11:30   20.95(1.01)***  41,344 

 11:30-12:00   25.95(1.01)***  40,481 

 12:00-12:30   23.28(0.98)***  40,388 

 12:30-13:00   24.45(0.85)***  41,653 

 13:00-13:30   16.12(0.65)***  45,273 

       

 Largest Market Caps 

 9:00-9:30 0.56(0.11)***  34,166 -1.20(0.47)***  48,159 

 9:30-10:00 -0.48(0.13)***  32,370 1.79(0.74)***  47,914 

 10:00-10:30 -0.62(0.16)***  30,476 3.04(0.90)***  47,595 

 10:30-11:00 -0.65(0.19)***  30,213 10.77(1.07)***  47,329 

 11:00-11:30 -0.57(0.20)***  29,797 17.84(1.20)***  47,050 

 11:30-12:00 -0.58(0.19)***  30,258 23.59(1.21)***  46,864 

 12:00-12:30 -0.24(0.19)***  30,549 23.13(1.15)***  46,846 

 12:30-13:00 -0.40(0.17)**  32,114 20.38(1.00)***  47,239 

 13:00-13:30 -0.36(0.10)***  38,055 11.99(0.82)***  48,091 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 


