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Abstract 

We investigate daily robust hedging performance with trading costs for markets of S&P 

500 Index option (SPX) and Taiwan Index option (TXO). Robust hedging refers to 

minimal model dependence on the risky asset price. Two hedging categories including 

“model-free” and “volatility-model-free,” and nonparametric methods for volatility 

estimation are considered in our empirical study. In particular, the instantaneous volatility 

is estimated by a proposed nonlinear correction scheme of Fourier transform method, 

justified by a simulation study for a local volatility model.  

An asymmetric phenomenon of hedging performances is documented. Hedging portfolios 

constructed from the “volatility-model-free” category induce much higher Sharpe ratios 

than those from the “model-free” category on SPX, while they perform comparably on 

TXO. Motivated from the price limit regulation in Taiwan, we further develop a time-

scale change method to explain this phenomenon. Asymptotic moment estimates of 

differences of some hedging portfolios are consistent with our empirical findings.  

 

JEL classification: C14; C15; G15. 
 

Keywords: Option Hedging Strategies, Volatility Estimation, Fourier transform method, 

Moment Estimation. 
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1. Introduction 

It has been recognized from empirical studies that complicated asset pricing 

models may not have better hedging performance than the ad hoc Black-Schole model. 

Bakshi et al. (1997), Lam et al. (2002) and Yung et al. (2003) document that stochastic 

volatility models, variance gamma models, and EGARCH (GARCH) models, 

respectively, are superior in volatility forecast and/or option pricing, but these models 

perform just comparably or even worse than the ad hoc Black-Scholes model (Dumas et 

al. (1998)) in option hedging.  

These observations indicate the importance of robust hedging. That is, model 

dependence of option hedging strategies should be minimized. We identify and classify 

several hedging strategies according to their level of model dependence. Since 

implementation of many hedging strategies essentially requires volatility as the input 

variable, nonparametric methods for volatility estimations are incorporated for our 

empirical study to keep the spirit of reducing model errors. Fourier transform method 

proposed by Malliavin et al. (2009) provides a new and alternative nonparametric 

estimation to measure the instantaneous volatility risk without imposing any specific 

volatility models. This line of investigation also differentiates our research from the 

current literature of merely using the implied volatility, a Black-Scholes model-

dependent volatility. As a whole, option hedging performances given robust hedging 

strategies and nonparametric volatility estimations are comprehensively studied in this 

paper. Option markets including SPX in US and TXO in Taiwan are chosen for empirical 

studies. A surprising difference on hedging performances between these two markets is 
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documented. The price limit effect postulated in Taiwan is attributed to such difference 

according to our asymptotic analysis.  

This paper studies intensively on hedging performance with trading costs for 

index option markets of SPX and TXO. We begin with an empirical study on hedging 

performances of these index options by various trading strategies with transaction costs 

and taxes. Two categories of hedging strategies are considered. (1) “Model-Free” 

category includes the stop-loss strategy and an adjusted stop-loss strategy. (2) “Volatility-

Model-Free” category includes the delta hedging, an adjusted delta hedging strategy, and 

the delta-gamma strategy. Each hedging strategy doesn’t depend on either any specific 

asset pricing model or any specific volatility model. Combinations of these two hedging 

categories with three volatility estimations2 of the historical volatility, the instantaneous 

volatility and the implied volatility are selected to compare hedging performances. 

 A key parameter for implementing these hedging strategies except the stop loss is 

volatility. Besides conventional methods of volatility estimation by the historical 

volatility and the implied volatility, a recent progress using a nonparametric Fourier 

transform method (Malliavin and Mancino (2009)) to estimate volatility matrix dynamics 

paves a way for estimation of the instantaneous volatility. In comparison with another 

popular nonparametric method for volatility estimation by quadratic variation formulas 

(see Zhang et al. (2005) and references therein), Malliavin and Mancino (2009) claimed 

that Fourier transform method is more stable because it relies on the integration of 

Fourier coefficients of the variance process as opposed to a numerical differentiation of 

                                                
2 The historical volatility and the instantaneous volatility are estimated based on 
nonparametric methods. The implied volatility does depend on the Black-Scholes model. 
It is incorporated because of its popularity in theory and practice. 
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quadratic variations. However, Reno (2008) alerts that the Fourier algorithm performs 

badly near time boundaries of estimated volatility time series data, i.e. estimated 

volatility of the first and last 1% time series are not accurate enough. To avoid this 

“boundary effect” pitfall, Han et al. (2010) provided an effective price correction scheme 

based on a linear regression derived from the distribution of estimated volatility given 

observed price returns. They justified that stochastic volatility models calibrated to the 

instantaneous volatility outperform GARCH (1,1) model based on backtesting results of 

Value-at-Risk (Joridon (2007)). In this paper, we propose a new correction scheme based 

on a nonlinear regression. A Monte Carlo simulation study for a local volatility model is 

used to demonstrate the accuracy of volatility estimation by these two correction 

schemes.  

We document an asymmetric phenomenon of hedging performances between 

SPX and TXO. For SPX, hedging portfolios associated with the “volatility-model-free” 

category induce much higher Sharpe ratios than those associated with the “model-free” 

category. (In fact, the delta hedging with the instantaneous volatility outperforms other 

combinations including the well-perceived delta hedging with the implied volatility.) 

However for TXO, Sharpe ratios of hedging portfolios associated with these two 

categories are comparable. That is, using “stop-loss” like strategies in daily hedge 

perform as good as “delta hedging” like strategies in Taiwan. We further investigate the 

sample mean and standard deviation of P/L differences between the stop-loss and the 

delta hedging portfolios. It is clear to observe that these two statistics from TXO are very 

small compared with those from SPX. See Figures 3 and 4 in Section 3 for graphically 
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demonstrations. These results further motivate our additional study of moment estimates 

for differences of hedging strategies. 

Notice that there is a strict price limit constraint in the market of Taiwan 

Weighted Stock Index (TAIEX). Such price limit controls the fluctuation of each stock 

price in daily basis. Enormous literature has been studying price limit effects, which 

include cooling-off, volatility spillover, delay in price discovery, trading interference, and 

magnet effect. See discussions from Kim and Rhee (1997), Chen (1998), Cho et al. 

(2003) and references therein. 

The relationship between hedging performance and the price limit has received 

surprisingly little attention despite its highly practical relevance in emerging markets 

such as Taiwan. We develop a theory that qualitatively explains small values of mean and 

standard deviation mentioned above on TXO, whereas hedging performance of SPX is 

considered as a control group of no price limit. Motivated from the cooling-off effect3 

from the price limit, we apply a time-scale change method to the Black-Scholes model, 

and analyze differences of hedging P/L induced from the stop-loss strategy and a rescaled 

delta hedging strategy. We obtain an asymptotic result to show that the P/L difference 

between these two hedging portfolios is small when the time change variable is small. 

This theoretical result is consistent to empirical findings in TXO. We shall remark that 

the time change method has been extensively studied in probability and mathematical 

finance. See an overview by Geman (2005), Fouque et al. (2003) and references therein. 

The organization of this paper is as follows. In Section 2, we introduce procedures 

of various trading strategies to hedge index options on SPX and TXO. In Section 3, 

                                                
3 The cooling-off effect means that the price limit helps dampen volatility and stabilize 
trading volumes particularly during turbulent trading days. 
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volatility estimations including the historical volatility, the instantaneous volatility, and 

the implied volatility are introduced. Fourier transform method with price correction 

schemes is used for the instantaneous volatility estimation. A local volatility model is 

examined as a simulation study to validate the effectiveness of our proposed nonlinear 

regression correction scheme. In Section 4, data sets, transaction costs and taxes of each 

trade, and empirical results of hedging performances are demonstrated. Comparisons of 

inter and intra option markets are discussed. In Section 5, a time-scale change method is 

developed to the Black-Scholes model in order to mimic a cooling-off effect of price 

limit. We analyze moments of P/L differences of two hedging strategies associated with 

the delta and the stop loss, and confirm that our theoretical result in a qualitative sense is 

consistent with empirical findings on TXO. 

 

2. Hedging Strategies 

  Two categories of dynamic hedging strategies are investigated in this paper. 

They are “Model-Free” category and “Volatility-Model-Free” category. The first 

category consists of two hedging strategies including the stop loss and an adjusted stop 

loss. The later strategy is designed to explore the persistency and the mean-reverting 

property of volatility in order to improve the stop-loss strategy.  

The second category consists of three dynamic hedging strategies including the 

delta hedging, an adjusted delta hedging, and the delta-gamma hedging. The adjusted 

delta hedging strategy is based on the corrected delta hedging formula derived in Fouque, 

Papanicolaou, and Sircar (2000). Theoretically, this strategy is helpful to improve the 

delta hedge by taking the smile or smirk effect of implied volatility into account. This 
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paper provides an empirical examination for such strategy. The delta-gamma hedging 

incorporates an additional option into the trading portfolio in order to eliminate the 

volatility risk. A number of practical ways to manage the volatility risk can be found in 

Gatheral (2006). 

 

2.1 Model-Free Category 

Two strategies are considered: the stop loss and an adjusted stop loss. Both 

strategies are fully independent of any pricing model. The stop-loss strategy is even 

independent of the volatility.  

1. Stop Loss: This strategy takes a hedging position as fully covered when the underlying 

price 

 

St  is in the money; otherwise fully naked. It can perfectly replicate the option 

payout but may suffer a huge transaction cost when 

 

St  is wandering around the strike 

price. See for example in Hull (2009) for a discussion.  

2. Adjusted Stop Loss: Based on one stylized fact of volatility (Engle (2009)) – property 

of mean reversion, we split the ad hoc stop-loss threshold K (the strike price) to an upper 

threshold such as 1.01K and a lower threshold such as 0.99K. When the current volatility 

level is low enough, the index price is likely to be in the money for a call option due to 

the leverage effect. Hence, it might be favorable to lower the stop-loss threshold K to, say 

0.99K, for an early assess into a hedging position. Analogously when the volatility is 

high enough, the stop-loss threshold might be changed to 1.01K for an early exit position. 

The volatility used to measure the depth of moneyness is chosen as the historical 

volatility, the instantaneous volatility or VIX.  
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We remark that VIX may not exist in some option markets or its leverage doesn’t 

appear strongly. For example TAIFEX didn't announce Taiwan VIX until December 

2006. Even Taiwan VIX has been calculated in TAIFEX for some time since then, the 

correlation between returns of TAIEX and returns of Taiwan VIX during December 2006 

and May 2009 is only -0.0726. Compared with the historical correlation -0.7213 between 

S&P 500 Index prices and the CBOE VIX during our sample period, Taiwan VIX 

provides a relatively weak leverage for its index price. Hence we use the historical 

volatility or the instantaneous volatility as other volatility measures. 

 

2.2 Volatility-Model-Free Category 

Three dynamic strategies within this category are the delta hedging, an adjusted 

delta hedging, and the delta-gamma hedging. Derivations of these hedging strategies are 

all rooted from the Black-Scholes pricing model but no specific volatility model is 

actually postulated. See Fouque et al. (2000) for detailed discussions. As a result, these 

strategies permit straightforward implementations without a full estimation of any 

volatility models such as the continuous-time Heston model (Heston (1993)) or discrete-

time ARCH/GARCH models (Tsay (2005)). Given the following notations: the current 

time t, the current index price 

 

St , the volatility 

 

! , the time to maturity 

 

! , the strike price 

K, the risk-free interest rate r, and the option price 

 

P(t,St ), three dynamic hedging 

strategies are introduced below. 

1. Delta Hedging: This strategy is effective to reduce the risk of market price. According 

to the Black-Scholes theory, an option price can be approximated by the dynamic 

portfolio 

 

! tSt +" te
rt , where 

 

! t = " t  is defined by ( ), t

t

P t S
S

!
" =

!
 and 

 

! t  denotes the net 
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position invested in the money market account after transaction cost and tax. In the case 

of call options, 

 

! t= ( ) 21 2
1

1
2

d xN d e dx
!

"

"#
= $ , where 

 

d1(!,St ) =
1

" !
[log

St
K

+ (r +
" 2

2
)!]. 

2. Adjusted Delta Hedging: Theoretically, this strategy is able to reduce not only the 

market price risk, but also partially the volatility risk. Fouque et al. (2000) applied a 

singular perturbation technique to derive an option price approximation such that an 

adjusted delta hedge strategy t!!  can be deduced as follows:  

 

! t

~
=
"P(t,x)

"x
#
V3$
x
(4x 2 "

2P(t,x)
"x 2

+ 5x 3 "
3P(t,x)
"x 3

+ x 4
" 4P(t,x)

"x 4
) , 

where the additional parameter 

 

V3  can be estimated from a linear regression of implied 

volatilities over the logarithm of market to money ratio (LMMR). This adjusted delta is 

capable of taking the volatility smile or smirk into account.  

3. Delta-Gamma Hedging: This strategy can reduce both the market price risk and the 

volatility risk, but such trading portfolio costs more than the previous two strategies 

because of extra positions in longer-dated options. In order to further reduce the volatility 

risk of an option price 

 

P(1)(t,St )  with a shorter maturity T1 , another option 

 

P(2)(t,St ) with 

a longer maturity T2 , T2 > T1 , can be traded in the hedging portfolio. Assuming that both 

options have the same strike prices, we can construct a dynamic portfolio of 

 

! tSt +" te
rt + ctP

(2)(t,St ), where  

( )

( )

( )

( )

( )

( )
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and ( )2

2

, t

t t

P t S
S S

! !"# = =
! !

. This strategy can approximate the option payout of P (1)  by 

eliminating the market price risk and the volatility risk simultaneously. 

In summary, the delta hedging, an adjusted delta hedging, and the delta-gamma 

hedging correspond to trading portfolios in the delta neutral position, the delta and 

partially gamma neutral position, and the delta-gamma neutral position, respectively. 

These positions are useful to distinguish the effectiveness of eliminating the market price 

risk with or without the volatility risk.  

 

3. Volatility Estimation 

Almost all hedging strategies mentioned above, except the stop loss, require an 

input of volatility for implementation of hedging portfolios. The study of volatility 

estimation either from the historical data and/or from the derivatives data has drawn 

tremendous attentions in past decades. See Tsay (2005), Gatheral (2006), Malliavin et al. 

(2009) and references therein. Its high-dimensional extension, i.e., volatility matrix 

estimation or correlation estimation, has been recently challenged by rapid developments 

in credit derivatives, credit portfolio risk management, etc. See Engle (2009) for details.  

In the spirit of reducing model dependence, volatility estimation methods 

considered in this paper are mostly nonparametric. For example, quadratic variation and 

Fourier transform method have no dependence on volatility specification, and they are 

used for estimation of the historical volatility and the instantaneous volatility, 

respectively in this paper. Though the implied volatility, defined as an inversion of the 

Black-Scholes formula, does depend on the Black-Scholes model, it is additionally 

employed into our empirical study due to its popularity in theory and practice. 
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Next we review the Fourier transform method and its price correction scheme. A 

new correction scheme by a nonlinear regression method is proposed. We use a local 

volatility estimation problem for a simulation study to examine effectiveness of corrected 

Fourier transform methods. 

 

3.1 Instantaneous Volatility Estimation by Fourier Transform Method 

Malliavin and Mancino (2002, 2009) proposed a nonparametric Fourier transform 

method for estimation of the volatility process. The volatility time series can be 

reconstructed in terms of sine and cosine basis under the following continuous semi-

martingale assumption. Let tu  be the log-price of a one-dimensional risky asset S  at time 

t , i.e., which follows a diffusion process ( )tt Su ln=  

 
                                    dut = µtdt +! tdWt ,                      (1) 
 
where tµ and Wt  denote the instantaneous growth rate and a one-dimensional standard 

Brownian motion, respectively. When the time interval [0,T] of the data period is 

rescaled to [0, 2! ] , it is known that the underlying tu  can be reconstructed as the Fourier 

series expansion 

u t( ) = a0 + !
bk du( )
k

cos kt( )+ ak du( )
k

sin kt( )
"

#
$
$

%

&
'
'k=1

(

) ,

 

in which Fourier coefficients of a’s and b’s are defined as follows: 

2

0
0

1( )
2 ta du du

!

!
= " ,                                  (2) 



 13 

2

0

1
( ) cos( )k ta du kt du

!

!
= " ,                                 (3) 

2

0

1( ) sin( )k tb du kt du
!

!
= " ,                                        (4) 

for any k !1 . Mallianvin and Mancino derived the Fourier coefficients of the variance 
2
tσ  by 

2 * * * *( ) lim  ( ) ( ) ( ) ( )
2 1

N k

k s s k s s kN s N
a a du a du b du b du

N
!"

#

+ +$% =#

& '= +( )+ * ,                        (5) 
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2 1

N k
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N
!"

#
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for 0≥k , in which ( )duas
*  and ( )dubs

*  are defined as 

* *

( ),      s  0 ( ),       s  0
( ) 0,               s  0           ( ) 0,                s  0

( ),     s  0 ( ),    s  0.

s s

s s

s s

a du if b du if
a du if and b du if

a du if b du if! !

> >" "
# #= = = =$ $
# #< ! <% %   

A smoothing technique is conventionally applied so that the time series of 

variance 2
tσ  is approximated by 

! t
2 ! !(!k)[ak (!

2 )cos(kt) + bk (!
2 )sin(kt)]

k=0

N

" ,             (7) 

where ! x( ) = sin
2 x( )
x2

 is a smooth function with the initial condition ! 0( ) =1  and δ  is a 

smooth parameter typically specified as ! = 1
50

 (Reno 2008). Mattiussi et al. (2010) 

further investigate sensitivities of the number of Fourier series and the smoothing 

parameter by simulation studies. 

Several advantages of this Fourier Transform method can be readily observed 

from Equations (2)-(6). First, the integration error of Fourier coefficients is adversely 

proportional to data frequency so this Fourier transform method is suitable for high-

frequency data. Second, this method is easy to implement because, as shown in (5) and 
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(6), Fourier coefficients of the variance time series can be approximated by a finite sum 

of multiplications of *a and *b . Third, this integration method avoids the instability 

inherited from those traditional methods based on the differentiation of quadratic 

variation. See Zhang et al. (2005) for details. 

 

3.2 Price Correction Schemes 

One key drawback of this Fourier transform method is documented by the 

“boundary effect,” i.e., a Gibbs phenomenon caused by the Fourier method. Reno (2008) 

noted that Fourier algorithm provides inaccurate estimate for volatility time series near 

the time boundary of simulated data. To remedy this boundary deficit, Han et al. (2010) 

took advantage of the relationship between asset returns and volatility, and proposed a 

price correction scheme based on a linear regression. In this paper, we propose another 

correction scheme based on a nonlinear regression. In our numerical simulation for 

estimating a local volatility time series, we find that the nonlinear regression scheme 

performs better.  

To fix notations, recall that ut  defined in (1) is the natural logarithm of asset 

price. Based on the Euler discretization, the increment of log-price ut can be 

approximated by ! t " t# t , where ! t  denotes a small discretized time interval and ! t  

denotes a sequence of i.i.d. standard normal random variables. This approximation is 

derived from neglecting the drift term of small order ! t  and using the increment 

distribution of Brownian motion !Wt = ! t" t . Let !̂ t  denote the volatility time series 

estimated from the original Fourier transform method. We review the linear regression 
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correction scheme proposed by Han et al. (2010) for bias reduction of volatility 

estimation. A new nonlinear regression correction scheme is also devised below.  

(1) Linear Regression Correction Scheme (Han et al. (2010)): This scheme consists of a 

log-linear transformation on the estimated variance process !̂ t
2  by Fourier Transform 

method in order to guarantee positiveness of volatility. That is, we transform Ŷt = 2ln!̂ t  

to a + bŶt  so that the corrected volatility ! t = exp a + bŶt( ) 2( )  satisfies 

!ut " exp a + bŶt( ) / 2( ) ! t" t ,  where !ut = ut+1 " ut , and a  and b  denote the correction 

coefficients. Hence, one can use the maximum likelihood method to regress out these two 

coefficients via the relationship between the logarithm of the squared standardized return 

!ut ! t and the driving volatility process a + bŶt : 

ln
!ut
! t

!

"
##

$

%
&&

2

= a + bŶt + ln! t
2 .                             (8) 

(2) Nonlinear Regression Correction Scheme: By taking a direct linear transformation on 

estimated volatility !̂ t  from the original Fourier transform method, we end up solving a 

nonlinear regression equation for estimation of correction coefficients a and b. That is, 

the true volatility ! t = a + b! t
!  satisfies !ut " (a + b! t

! ) ! t" t so that a nonlinear 

regression equation is obtained: 

ln !ut ! t( )2 = ln(a + b! t
! )2 + ln! t

2 .               (9) 

Note these two price correction schemes (8) and (9) must be solved numerically 

by the maximum likelihood method due to the complex distribution of a log-Chi square 
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ln! t
2 . Their computational costs are the same. Though there is no guarantee that the 

corrected volatility estimation ! t = a + b! t
!  based on a nonlinear regression scheme 

remains positive, no negative volatility has been found in either our simulation study or 

empirical study. In fact, this nonlinear correction scheme outperforms the linear 

correction scheme according to the following simulation study for a local volatility 

model. 

 

3.3 A Simulation Study: Local Volatility Estimation 

Since the true instantaneous volatility is not known, we test two proposed 

correction schemes by simulation. A local volatility model of the following form 

( ) +t t t tdS m S dt S dw!" #= $  

is considered. In Jiang (1998), those model parameters were estimated as 

! = 0.093 ,m = 0.079, ! = 0.794  and ! =1.474 . We employ this set of parameters, then 

simulate the price process St  with its volatility process ! t = "St
# . The simulation is done 

by the Euler discretization  with time step size ! t = 1/250 and the total sample number is 

5000.  

Based on the original Fourier transform method and those two proposed price 

correction schemes, three volatility time series can be estimated and used to compare 

with the actual volatility series. We use two criterions for error measures including Mean 

squared errors (MSE) and Maximum absolute errors (MAE). Comparison results are 

listed below: 
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1. MSE: 7.52E-04 (Fourier method), 1.19E-05 (Linear Regression Correction Scheme), 

7.61E-06 (Nonlinear Regression Correction Scheme). 

2. MAE: 0.04 (Fourier method), 0.02 (Linear Regression Correction Scheme), 0.01 

(Nonlinear Regression Correction Scheme). 

Noticeably, the price correction schemes (8) and (9) are able to reduce effectively both 

error criterions at least by half in this simulated example. Our newly proposed nonlinear 

regression correction scheme performs better than the linear correction scheme. We will 

use this nonlinear scheme for estimation of the instantaneous volatility in our empirical 

study of hedging performance. 

 

4. Empirical Study of Hedging Performance: SPX and TXO 

We consider the hedging performance for call options of S&P 500 Index and 

Taiwan Index. Profit and loss (P/L) and Sharpe ratio are used as two measures for 

hedging performance. Various strategies within the two hedging categories discussed in 

Section 2 are possibly combined with three volatility estimations, discussed in Section 3, 

including the historical volatility, the instantaneous volatility and the implied volatility. 

The historical volatility is estimated from thirty-day historical returns, the instantaneous 

volatility is estimated by the proposed nonlinear regression correction scheme of Fourier 

transform method, and the implied volatility is estimated from an inversion of the Black-

Scholes formula.  

 

4.1 Data Description 
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The nearest contract months of option prices with maturity times that are greater 

than one day but less than or equal to thirty days are selected in this empirical study. We 

avoid one-day option prices because some implied volatilities on TXO cannot be solved 

from the Black-Scholes formula. Option prices with thirty-one days to maturity and 

beyond are also excluded because of low trading volumes on TXO. Such selection 

criterions are applied to SPX for data consistency. 

The sample period of S&P 500 Index prices and prices of SPX, traded in the 

Chicago Board Options Exchange (CBOE), is from January 2001 to June 2006. Daily 

data were retrieved from the Ivy Database of OptionMetrics. The total number of call 

options within that sample period is 105,125. One contract of SPX is on 100 US dollars 

(USD) times the option price. The transaction cost of trading options is set as 0.5 USD 

per contract.  The risk-free interest rate is chosen as the three-month U. S. Treasury Bill. 

Taiwan Index option (TXO) has been traded in Taiwan Futures Exchange 

(TAIFEX) since 2002. Its underlying is Taiwan Stock Exchange Capitalization Weighted 

Stock Index (TAIEX). Our sample period is from July 2003 to March 2009 including the 

recent financial crisis. Daily prices of TAIEX and TXO are downloaded from Taiwan 

Stock Exchange (TWSE) and TAIFEX, respectively. The time to maturity of TXO lasts 

from two trading days to thirty trading days. The total number of call options within that 

data sample period is 43,993. One index option contract in TXO is on 50 New Taiwan 

Dollars (NTD) times the option price. The transaction cost in TAIFEX is 9 NTD for 

buying and selling each option contract with an additional 0.1% tax rate. The risk-free 
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interest rate is chosen as the average of one-month CD rates from five large domestic 

banks4 in Taiwan.  

Notations of hedging strategies are shown in the following: 

  

!-H, 

  

!-F and 

  

!-Imp 

denote the delta hedging strategy combined with the historical volatility, the 

instantaneous volatility and the implied volatility, respectively. We denote by ad

  

! and  

  

!-

  

! the adjusted delta hedging and the delta-gamma hedging, respectively. Both use the 

historical volatility. SL denotes the stop-loss strategy, and adSL-H, adSL-F and adSL-V 

denote the adjusted stop-loss strategy using the historical volatility, the instantaneous 

volatility and VIX, respectively. 

 

4.2 Hedging Performance of SPX 

Results of two measures (P/L and Sharpe ratio) for hedging call options with time 

to maturity T=20 days are reported in Table 1. On each row of that table, the year period, 

the total number N of hedged call options and their hedging performances are reported. 

The best measure of hedging performances within each row is highlighted in bold face 

with an underline. The sample mean of P/L, i.e. averaged P/L, with a parenthesis means a 

loss; otherwise it means a profit. For example, Panel A-(1) illustrates that there are 441 

call options hedged in 2001. The best hedging performance is obtained by the stop-loss 

strategy, which makes a profit of USD 296 on average per contract.  The last row of this 

subpanel records the hedging performance for the whole sample period from year 2001 to 

2007. 

                                                
4 Bank of Taiwan, Taiwan Cooperative Bank, Firstbank Commercial Bank, Hua Nan 
Bank, and Chang Hwa Bank 
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Given such fixed hedging period T=20, the P/L average of each hedging strategy 

is positive. In general, hedging strategies within the model-free category generate larger 

profits than those in the volatility model-free category (see Panel A-(1)), so do their 

standard deviations (see Panel A-(2)). This implies hedging performance of the model-

free category is less stable than the volatility-model-free category. In terms of Sharpe 

ratio as a measure of hedging performance, the volatility model-free category 

outperforms the model-free category in general. Within these two categories, adjusted 

strategies including the adjusted stop loss and the adjusted delta hedging perform roughly 

the same as their ordinary strategies including the delta hedging and stop loss, 

respectively. Next, we demonstrate the time evolution of hedging performance of Sharpe 

ratios from T=2 to 30 in Figure 1.  

This figure shows dynamic behaviors of Sharpe ratios associated with all hedging 

strategies within the volatility-model-free category and the model-free category. It is 

observed that first, the delta hedging using the instantaneous volatility (Del-F) performs 

best within the volatility-model-free category. This result is a new finding in hedging 

literature to our knowledge and consistent with the use of the instantaneous volatility in 

Value-at-Risk estimation (Han et al. (2010)). However, it is not so clear to determine the 

best strategy within the model-free category. Second, all these Sharpe ratios increase with 

maturity time. That is, longer the time period a hedging position is formed, higher Sharpe 

ratio is obtained. Third, the volatility-model-free category outperforms in general than the 

model-free category except when the time to maturity is short.  

The last observation, i.e., a separation of hedging performances between the two 

hedging categories on SPX will have a contradict result on TXO. 
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4.3 Hedging Performance of TXO 

Table 2 records results of two measures including P/L and Sharpe ratio for the 

performance of hedging call options on TXO. The time to maturity T is chosen as 20 

trading days. Several observations can be made below. First, aggregate hedging 

performances, shown in the last lines of each panel, of the volatility-model-free category 

and the model-free category are roughly of the same numeric order. This means that 

hedging performances of all strategies are comparable in TXO. This phenomenon is 

significantly contradictory to what observed a well separation of hedging performances 

on SPX. Second, in the volatility-model-free category the delta hedging using the implied 

volatility performs worse than the other three hedging strategies using the historical 

volatility.  This is also different from what observed in Table 1 on SPX.  

Figure 2 demonstrates dynamic behaviors of several hedging performances. We 

observe that first all hedging strategies perform rather comparable except the delta 

hedging using the implied volatility. Second, Sharpe ratios decrease with maturity time. 

This means that shorter the time period of the hedging position is formed, higher the 

Sharpe ratio is gained. It is worth noting that these two phenomena are significantly 

different from what observed on SPX.    

 

4.4 Comparisons of Hedging Performances for SPX and TXO 

A summary of hedging performances on SPX and TXO is listed below. 

1. Dynamics of Sharpe ratios for hedging call options are different. Sharpe rations of 

SPX tend to increase with maturity time while they tend to decrease on TXO. 
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2. In both measures of P/L and Sharpe ratios, the volatility-model-free category 

dominates the model-free category on SPX, while these two categories perform 

comparably on TXO. 

We further investigate the P/L difference between the delta hedging strategy and 

the stop-loss strategy for a comparison. Each strategy is considered as the delegate of 

the volatility-model-free category and the model-free category. The empirical 

hedging differences of P/L are demonstrated in Figures 3 and 4 for their means and 

standard deviations, respectively. Maturity times span from two to thirty trading days.  

In each figure, HE1(2,3) represents the averaged hedging difference between the stop 

loss and the delta hedging in use of the historical volatility (the instantaneous 

volatility, the implied volatility, respectively). The dollar unit is USD.  

Hedging differences on TXO are all close to zero rather uniformly for both mean 

and standard deviation. In contrast, these two statistics are relatively large on SPX. 

The next section is managed to provide a theoretical justification about small hedging 

differences between the delta and the stop loss on TXO. 

 

5. A Moment Analysis for Hedging Differences  

We have seen from Table 2 that hedging performances between model-free 

category and volatility-model-free category are comparable on TXO. More specifically 

Figures 3 demonstrates that the hedging differences between the delta hedging and the 

stop loss are relatively small compared with those differences induced from SPX. This 

section is devoted to justify these small hedging differences on TXO by a mathematical 

moment analysis.  
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Notice that there is a strict price limit constraint on TAIEX while S&P 500 Index 

doesn't. Motivated from the volatility cooling-off effect of the price limit (Kim and Rhee 

(1997)), we develop a time-scale change method for the classical Black-Scholes model, 

and analyze the hedging difference between the stop-loss strategy and a rescaled delta 

hedge strategy.  

The Black-Scholes-Merton's option pricing theory assumes that the dynamic of 

the underlying risky asset price 

 

St  follow a geometric Brownian motion. That is, under 

the physical probability measure, the asset price satisfies  

 

dSt
St

= µdt + !dWt , 

where 

 

µ  is the return rate, 

 

!  is the volatility, and 

 

Wt  is the Brownian motion. The 

solution of this stochastic differential equation is 

 

ST = St exp µ ! "
2

2
# 

$ 
% 

& 

' 
( T ! t( ) + "WT! t

# 

$ 
% 

& 

' 
(  

given that 

 

T ! t  and 

 

St ! 0. The time-scale change method postulates a variable change 

in time as the follows: 

 

dSt
St

= µd!t + "dW!t  

                                                         

 

= µ!dt + " !dWt                                                      (1) 

where 

 

! > 0  is a small time scale, which controls the speed of the new time variable 

 

!t . 

The time scale 

 

!  can be either deterministic or random, assuming independent of the 

Brownian motion 

 

Bt( )t!0 . In this study we assume a deterministic 

 

!  for ease of 

explanation. Thus, the solution of Eq. (1) is 

 

ST = St exp µ ! " 2

2
# 

$ 
% 

& 

' 
( ) T ! t( ) + " )WT! t

# 

$ 
% 

& 

' 
( . 



 24 

Under the risk-neutral probability measure, the market price risk or risk premium is 

chosen as 

 

r ! µ"
# "

. Let 

 

p! t,St( )  denotes the European option price under the scaled 

dynamic (1) with the payoff 

 

h ST( ) . By applications of Ito's lemma used in the option 

pricing theory, it is straightforward to obtain the following results. The scaled pricing 

partial differential equation is 

 

L!P! t,x( ) = 0  

with the terminal condition 

 

P! T,x( ) = h x( ) , where the partial differential operator 

 

L! = "
"t

+ # 2!x 2

2
" 2

"x 2
+ rx "

"x
$ r . Hence at the current time t, the vanilla call option price 

with the strike price K and the maturity T is 

 

p! t,x( ) = xN d1
! t,x( )( ) " e"r T" t( )KN d2

! t,x( )( ), 

where 

 

d1
! t,x( ) =

ln z /K( ) + r + " 2! 2( ) T # t( )
" ! T # t

 and 

 

d2
! t,x( ) = d1

! "# ! T " t , and its delta 

is 

 

!P" t,x( )
!x

= N d1
" t,x( )( ). 

We remark that the time-scale change model proposed can be possibly extended 

to random time change. For example in the case of the variance gamma model (see 

Geman (2005)), the scaled time 

 

!t  has a gamma distribution, so that the option pricing 

formula can be carried out by Fourier transformation. We leave this theoretical issue for a 

future research topic. 
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Suppose one hedges the option using the trading strategy 

 

! t ,"t( ) , where this 

strategy invests 

 

! t  units of the index at time t and 

 

!t = P" t,St( ) #$ tSt( ) ert . We define 

the instantaneous hedging error by 

 

! tdSt + "t re
rtdt # dP$ t,St( ). 

The accumulative hedging errors from time 0 to time T, denoted by 

 

HET , is defined by 

 

HET = ! tdSt + " t re
rtdt # P$ T,ST( ) # P$ 0,S0( )( )0

T%0

T%  

  

 

= P! 0,S0( ) + " t0

T# dSt + $t re
rtdt %

0

T# P! T,ST( )  

Assume two different hedging strategies 

 

! t
1( )  and 

 

! t
2( ) are used for hedge. Let 

 

HET
1( )  and 

 

HET
2( )  denotes their accumulative hedging errors respectively. Their difference equals to 

 

HET
1( ) !HET

2( ) = " t
1( ) !" t

2( )( )dSt ! " t
1( ) !" t

2( )( )rStdt0

T#0

T#  

                                        

 

= ! t
1( ) "! t

2( )( )0

T# µ$ " r( )Stdt + % $ ! t
1( ) "! t

2( )( )0

T# StdWt .  

In cases of the stop-loss strategy 

 

! t
1( ) = I St > e"r T" t( )K( )  and the delta hedging 

strategy

 

! t
2( ) = N d1

" t,x( )( ) , we will prove that any moment of the accumulative hedging 

difference 

 

HET
1( ) !HET

2( )  converges to zero when the time scale 

 

!  approaches to zero. To 

obtain this result, we first prove the following lemma. Its proof is showed in the 

Appendix. 

Lemma 1. 

 

E ! t
1( ) "! t

2( )( )2{ } # C
$t
e
" 1
$  for some constant C independent of time and the 

scale 

 

! . It implies that 

 

E ! t
1( ) "! t

2( )( )2{ } converges to zero as 

 

!  goes to zero. 

      By applications of the Cauchy-Schwartz inequality on the hedging error equation, any 

moment of the accumulative hedging errors is bounded by  

 

C1 E ! t
1( ) "! t

2( )( )2{ }dt0

T#  
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 for some constant 

 

C1 independent of  

 

! . By Lemma 1, it is easy to obtain the following 

theorem. 

 

Theorem 2 (Moments Bound) For any positive integer n, 

 

E HET
1( ) ! HET

2( )( )n{ } "
C
#
e!1 #  for some constant C independent of 

 

! . 

We obtain an asymptotic result to show that the difference between two hedging 

strategies is small when the time change variable is small. This theoretical result is 

consistent to observed hedging performance in Taiwan. 

 

6. Conclusion 

This paper extends previous empirical studies on option hedging performance. Robust 

hedging strategies and nonparametric volatility estimations are comprehensively studied. 

It shows that the instantaneous volatility estimated from a corrected Fourier transform 

method may play an important role in hedging on SPX. An asymmetric phenomenon 

arising from our empirical study is also observed as follows. The “volatility-model-free” 

hedging category generally outperforms the “model-free” hedging category on SPX; 

while these two categories perform roughly the same on TXO.  

The second part of this paper aims to explain this documented phenomenon by a detailed 

comparison between the delta hedging and the stop-loss strategy as delegates of two 

hedging categories. We propose a time-scale change method to account for the price 

limit, which is typically regulated in emerging markets such as Taiwan. The SPX market 

serves as a control group of no price limit. An asymptotic analysis confirms estimated 

moments of hedging portfolio differences with our empirical finding. 
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Appendix A: Proof of Lemma 1 

Recall that the solution of (1) is ( )( )ZttrSSt δσδσ ++= 2exp 2
0  , where Z denotes 

the standard normal random variable. Substituting this into ( )1
tα  and ( )2

tα  , we deduce  

( )
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We first consider the convergence result in the first term. Assuming that 0ln 0 >+ rT
K
S ,  

∞−→*z  as 0↓δ . To analyze the first term in (2), we divide the integration domain 

( )∞,*z  into three regions ( ) ( ) ( )∞−− ,,,,,* εεεεz  for some 0>ε , then study the 

convergent result for each corresponding sub-integral.  

Because ( )

⎟⎟
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1 , the third sub-integral equals to  
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If one choose δε 1−= e , then this term is bounded above by δδ 1−eC  for some constant 

C , independent of δ and t . Next we consider the second sub-integral 
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where we use the bound of the normal integral function. Next we proceed to the first sub-
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The procedure to prove the other case 0ln 0 <+ rT
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S , is similar, so we skip the proof 

here. We conclude this lemma by ( ) ( )( ){ } δ
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Table 1: P/L and Sharpe ratio of hedging performance on SPX (time to maturity T=20 

trading days) 

Panel A : P/L of Hedging Strategies 

(1) Mean (Average) – US Dollars 

Mean (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V 

2001 441 224 236 189 218 159 296 265 276 267 

2002 451 181 2 

 

251 197 84 270 252 232 247 

2003 454 142 120 175 135 61 157 141 150 106 

2004 494 120 158 136 118 45 119 177 70 138 

2005 591 166 166 154 166 112 168 182 176 158 

2006 783 267 304 274 268 200 422 262 228 244 

2007 411 77 156 99 79 78 95 460 442 374 

2001 ~ 07 3625 177 176 190 178 114 235 244 219 216 

 

 

(2) Standard Deviation  

S.D. (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V 

2001 441 467 513 469 484 354 802 980 917 946 

2002 451 888 488 983 916 592 1296 1331 1375 1362 

2003 454 351 404 398 365 259 676 740 697 689 

2004 494 402 396 407 398 323 545 663 634 608 

2005 591 212 246 196 203 159 428 570 542 548 

2006 783 418 295 371 414 370 4598 801 791 820 

2007 411 843 577 524 841 756 1077 7285 7304 7290 

2001 ~ 07 3625 540 422 510 547 428 2264 2585 2587 2584 
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Panel B : Sharpe Ratio of Hedging Strategies 

 

S.R. (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V 

2001 441 0.4805 0.4612 0.4023 0.4504 0.4488 0.3687 0.2701 0.3004 0.2820 

2002 451 0.2034 0.0033 0.2558 0.2148 0.1411 0.2086 0.1895 0.1690 0.1812 

2003 454 0.4056 0.2976 0.4411 0.3697 0.2337 0.2331 0.1912 0.2144 0.1533 

2004 494 0.2991 0.3989 0.3345 0.2956 0.1399 0.2190 0.2663 0.1096 0.2271 

2005 591 0.7802 0.6723 0.7826 0.8190 0.7037 0.3924 0.3199 0.3253 0.2878 

2006 783 0.6392 1.0306 0.7392 0.6489 0.5396 0.0917 0.3277 0.2882 0.2973 

2007 411 0.0919 0.2702 0.1884 0.0934 0.1029 0.0886 0.0631 0.0605 0.0513 

2001 ~ 07 3625 0.3287 0.4168 0.3731 0.3254 0.2656 0.1038 0.0943 0.0845 0.0836 
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Table 2: P/L and Sharpe ratio of hedging performance in TXO (time to maturity T=20 

trading days) 

Panel A : P/L of Hedging Strategies 

(1) Mean (Average) – New Taiwan Dollars 

Mean (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V5 

2003 93 200 107 (19) 200 (269) 153 76 266 (63) 

2004 218 66 246 97 66 (400) 319 87 (210) (135) 

2005 191 (352) (401) (437) (352) (675) (207) (423) (299) (500) 

2006 223 (178) (304) (366) (178) (536) (98) (73) (241) (47) 

2007 326 (108) (142) (295) (108) 157 (131) (521) (266) (365) 

2008 393 53166 53289 48609 53166 54062 53630 53409 53393 53389 

2009 73 (1362) (1385) (1707) (1362) (944) (1212) (1434) (1246) (1434) 

2003 ~ 09 1517 13636 13655 12351 13636 13756 13822 13609 13628 13591 

 

(2) Standard Deviation 

S.D. (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V 

2003 93 989 1197 1436 989 770 1961 2714 2496 2598 

2004 218 1918 1859 2158 1918 1406 3549 4065 4946 5016 

2005 191 991 1134 981 991 969 1885 2606 2357 2579 

2006 223 1350 2181 1379 1350 1077 2680 3371 3171 3332 

2007 326 3268 3244 3190 3267 4287 5102 5733 5865 5727 

2008 393 79641 79560 81188 79640 79379 79719 79949 79894 79958 

2009 73 11088 11382 10595 11088 8625 11655 11689 11559 11689 

2003 ~ 09 1517 46892 46895 46649 46891 46996 47077 47211 47185 47226 

 

                                                
5 The calculation of VIX before its announcement from TAIFEX in December 2006 is 
based on a formula given by SinoPac Futures.  
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Panel B: Sharpe Ratio of Hedging Strategies 

S.R. (T=20) Volatility-Model-Free Model-Free 

Year N Δ-H Δ-F Δ-Imp adΔ Δ-Γ SL adSL-H adSL-F adSL-V 

2003 93 0.2022 0.0894 (0.0129) 0.2022 (0.3496) 0.0779 0.0281 0.1065 (0.0243) 

2004 218 0.0343 0.1322 0.0451 0.0343 (0.2842) 0.0900 0.0213 (0.0425) (0.0270) 

2005 191 (0.3556) (0.3538) (0.4451) (0.3556) (0.6966) (0.1100) (0.1624) (0.1268) (0.1940) 

2006 223 (0.1316) (0.1394) (0.2658) (0.1317) (0.4981) (0.0367) (0.0217) (0.0759) (0.0141) 

2007 326 (0.0331) (0.0437) (0.0926) (0.0331) 0.0366 (0.0256) (0.0908) (0.0454) (0.0637) 

2008 393 0.6676 0.6698 0.5987 0.6676 0.6811 0.6727 0.6680 0.6683 0.6677 

2009 73 (0.1229) (0.1217) (0.1611) (0.1229) (0.1094) (0.1040) (0.1227) (0.1078) (0.1227) 

2003 ~ 09 1517 0.2908 0.2912 0.2648 0.2908 0.2927 0.2936 0.2883 0.2888 0.2878 
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Figure 1: Evolution of Sharpe ratios of hedging strategies on SPX given time to maturity 

T from 2 to 30. 

S&P Index Option 
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Figure 2: Evolution of Sharpe ratios of hedging strategies on TXO given time to maturity 

T from 2 to 30. 

Taiwan Index Option 
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Figure 3: Comparisons of differences of hedging performances between Delta and Stop-

Loss strategies. 

(a) Mean of Hedging Differences 

 

(b) Standard Deviation of Hedging Differences 
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