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David Shyu, Chia-Chien Chang 

 

Abstract 

    This article studies the pricing of securitization of life insurance under mortality dependence 

and stochastic interest rate. Following the empirical results of Brown and McDaid (2003), this 

paper models stochastic mortality intensity and then considers certain important risk factors 

(income, gender, age, and others) affecting mortality rate to derive the mortality probability for 

each policyholder. Further, multiple Clayton copula is used to measure the mortality dependence 

of multiple life insurance policies. Death time of each policyholder can be projected through 

multiple Clayton copula. This paper applies the estimated death time to design and price 

Collateralized Insurance Obligation under mortality dependence. The numerical results of Monte 

Carlo simulation show that the independence assumption tends to overestimate the premium of 

equity tranche and underestimate the premiums of mezzanine tranche and senior tranche. 
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1. Introduction 

    To simplify actuarial calculations in the pricing of life policies portfolios, it has traditionally 

been assumed that individual mortalities of policyholders are independent. Nevertheless, it may 

make the intuitive sense that the mortality risk of policyholders is correlated, called mortality 

dependence. There have been some studies supporting mortality dependence on pairs of 

individuals. For example, Parkes et al. (1969) show that there is a 40% increase in mortality 

among the widowers during the first few months after the death of their wives; see also Ward 

(1976). While the independence assumption tends to overestimate the mortality cost for joint first 

death insurance, it underestimates the cost for joint last survivor policies. This unrealistic 

assumption could have a large financial impact on the insurance industry as their mortality cost 

or reserves could not be projected accurately. Hence, mortality dependence should be 

emphasized when reference entities of the contract are linked to a portfolio of life insurance. 

Meanwhile, the joint mortality probability of the portfolio of life insurance should be projected 

accurately in order to obtain correct pricing for the securitization of life insurance with mortality 

dependence.  

   This paper uses a copula function, which is a mathematical function that combines marginal 

mortality probability into a joint mortality distribution, to measure the mortality dependence of 

multiple life insurances. Bassan and Spizzichino (2005) consider bivariate survival models 

characterized by the condition that bivariate aging function is a Clayton copula. This paper 

extends Bassan and Spizzichino (2005) to obtain joint mortality probability of multiple life 

insurances by using multiple Clayton copulas.  

    For the mortality rate of marginal mortality probability, some recent investigations almost 

assume that the mortality rate involves age-dependency and time-dependency terms, such as Lee 
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and Carter (1992), Lee (2000), Olivieri (2001), Olivieri and Pitacco (2002), and Renshaw and 

Haberman (2003). However, for the insurers, since the information set of mortality factors is not 

detailed and wealthy, uncertainty of the future development may not clearly be delineated. 

Further, as opposed to e.g. Lee and Carter (1992), Lee (2000) this study focus on the pricing and 

risk management application in mind rather than the time series properties of mortality. In 

contrast to Milevsky and Promislow (2001), Dahl (2004), Biffis (2005), and Schrager (2006) to 

consider the mortality intensity for all ages simultaneously, this paper follows Biffis (2005) and 

Schrager (2006) to consider the mortality intensity as a hazard rate in the context of the 

Cox-process approach developed by Lando (1998).  

    Brown and McDaid (2003) review 45 recent research papers that look at factors that affect 

mortality after retirement. They show that, in addition to age and gender, mortality intensity is 

also affected by race and ethnicity, education, income, occupation, marital status, religion, health 

behaviors, smoking, alcohol, and obesity. Especially, Pappas et al. (1993) discover that not only 

do poor people have higher mortality rate than wealthy people, but also mortality rate fall 

consistently when levels of income goes up. Similar findings are reported in other papers, such 

as Sorlie et al. (1995), Williams and Gollins (1995), Deaton and Paxson (1999), and Attanasio 

and Emmerson (2001). Hence, income is a strong predictor of mortality. To be consistent with 

empirical results above, this paper proposes that the risk factors governing mortality intensity 

function are income, gender, age, and other factors such as marital status, religion, health 

behaviors, smoking, alcohol, and obesity. Importantly, this paper assumes that income follows 

the stochastic differential equation and it applies the extended Vasicek model proposed by Hull 

and White (1990) to describe the randomness of interest rate
1
. This allows us to capture the force 

                                                 
1 Extended Vasicek model proposed by Hull and White (1990) allows an exact fit to the initial term structure of interest rate and interest rate 

volatility compared with Vasicek model proposed by Vasicek (1977).  
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of mortality intensity and uncertainty of its future development more accurately. Furthermore, by 

using multiple Clayton copulas with the mortality intensity function we constructs, this study 

could obtain death time of each policyholder for multiple life insurance. Once death time of each 

policyholder for multiple life insurance is projected precisely, it could be used to calculate the 

premium, reserves, and value of insurance securitization. In short, this paper attempts to apply 

death time of each policyholder to price the securitization of life insurance with mortality 

dependence under the case of multiple Clayton copulas.     

     The first significant development in hedging mortality and longevity risk is the Swiss Re 

mortality bond issued in December 2003
2
. In November 2004, a 25-year longevity bond was 

issued by the European Investment Bank.
3
 Unfortunately, there is a “basis risk

4
” in the structure 

of these two products. Blake and Burrows (2001) first provide the longevity bonds to deal with 

longevity risk where coupon payments are linked to the number of survivors in a given cohort. 

Lin and Cox (2005) price mortality bonds and swaps under the following three assumptions. 

Firstly, the mortality distributions of policyholders are independent. Secondly, the underlying 

annuity insurances in the mortality bonds or swaps face the same insurance amount. Finally, the 

mortality bond just links to all mortality risk of the underlying annuity insurances and this infers 

that all bond investors with different risk preferences face the same mortality risk on the 

underlying annuity insurances.  

    This main contribution of this paper is to relax three assumptions mentioned by Lin and 

Cox (2005) and is the first study to design and price an alternative mortality-linked security with 

mortality dependence and stochastic interest risk, called Collateralized Insurance Obligation 

                                                 
2 This 3-year maturity mortality bond is based on a mortality index of the general population of the United States, United Kingdom, France, Italy 

and Switzerland rather than the portfolio of Swiss Re life insurance policy. 
3 Coupon payments are linked to the proportion of the population who were age 65 in 2003 and are still alive at the coupon date. 
4 Basis risk refers to the risk that the losses that the portfolio of Swiss Re life insurance policy will not have an anticipated correlation with the   

mortality index of the general population of the United States, United Kingdom, France, Italy and Switzerland. 
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(CIO), which is the generalization of the securitization of Lin and Cox (2005). Comparing with 

mortality swap and mortality bond discussed by Blake and Burrows (2001) and Lin and Cox 

(2005), the best advantage of CIO is that it links to a portfolio of life insurance with different 

insurance amount and different degree of mortality risk. Thus, there is no basis risk for this 

structure and CIO could be more attractive to investors because that the investors can invest 

various tranches of CIO which are discriminated by the mortality risk according to their risk 

preference
5
.   

    This paper is organized as follows. Section 2 models stochastic mortality intensity and uses 

risk factors to derive the mortality probability of each policyholder. Section 3 introduces the 

Clayton copula to capture mortality dependence and simulates the death time of each 

policyholder for multiple life insurance. Section 4 designs and prices an alternative 

mortality-linked security, CIO. Section 5 provides the numerical analysis of CIO. Section 6 

concludes this paper. 

 

2. Model 

2.1.  Stochastic mortality intensity  

    In life insurance, actuaries have traditionally calculated premiums and reserves using 

deterministic mortality intensity, which is only a function of the age of the insured. This study 

models the mortality intensity as a stochastic process. The advantage of this setting is to allow us 

to capture the features of time dependency and uncertainty of the future development. Consider 

n  life insurances and let : , 1,2 ,... ,
i

i nκ +→ =�Ω  be a strictly positive random variable, and 

it is referred to the death time of the policyholder i , for i =1,2,...n , which is generated by a 

                                                 
5 The structure of CIO is similar to Collateralized Debt Obligation (CDO). In recent years, CDO has been grown rapidly in financial market and 

become main tool to hedge credit risk for the banks. According to the Bond Market Association, gross global issuance of all types totaled USD 

157 billions in 2004, USD 251 billions in 2005, and USD 71 billions in the first quarter of 2006.    
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filtered probability space ( )P,,GΩ ; P  is an equivalent martingale measure, the enlarged 

filtration 0G ( )t tG ≥=  satisfies HFG W ∨= ; i.e., 
t t t

G F H= ∨  for any t +∈� . The death 

time of a policyholder is modeled as stopping time 
i
κ  with respect to some filtration,

t
G . Then 

we define that:  

                   { }inf : ( )
T

i i s i
t

t X ds Eκ λ= ≥∫ , for 1,2,...i n= ,                (1) 

where we assume that counting process )(tN i  is a doubly stochastic Poisson processes of death 

(Cox process) with a random intensity ( )
i s

Xλ . The assumption that the intensity is a function of 

the current level of the state variables, and not the whole history, is convenient in applications, 

but it is not necessary from mathematical point of view. 
∗

=
T

ttX 0)(  is a right continuous with left 

limits d
� -valued process and represents d  state variables, such as the gender, age, or other 

risk factors deemed relevant for predicting the likelihood of mortality. iE  is unit exponential 

random variables which is independent of state variables and 
i
λ . The death time 

i
κ  can be 

correspondingly considered as the first jump-time of the Cox processes )(tN i  with 

non-negative stochastic intensity process ( )
i t

Xλ  and are conditional independent with respect 

to the filtration generated by X  under P . Hence, the information at time t  is:  

tG = tF
t

H∨  

where )0),(( tssXFt ≤≤= σ  and represents the information generated by the observations of 

the gender, age, or other variables up to time t, respectively. { }(1 , )
i

t s
H s tκσ ≤= ≤  and stands for 

the natural filtration of death time 
i
κ , and tG  then corresponds to knowing the evolution of 

these variables up to time t  and whether the policyholder is alive or not. As the intensity of 
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mortality becomes large, the integrated mortality may rise faster and touches the level of the 

independent exponential variable sooner. Eventually, it leads the random time to be small and 

results to the mortality probability higher. 

 

2.2. Risk factors of mortality intensity and mortality probability of each policyholder 

    Brown and McDaid (2003) review 45 recent papers on the topic about factors affecting 

retirement mortality. They find that the mortality rate is influenced by age, gender, race, ethnicity, 

education, income, occupation, marital status, religion, health behaviors, smoking, alcohol, and 

obesity. Especially, income is a strong predictor of mortality. Pappas et al.(1993) show that not 

only do poor people have higher mortality rate than wealthier people, but also mortality rate fall 

consistently as levels of income rise up. Further, the mortality disparity by income is widening. 

Hence, income is a strong predictor of mortality. Similar finding are reported by Attanasio and 

Emmerson (2001), Williams and Gollins (1995), Sorlie et al. (1995), and Deaton and Paxson 

(1999). Consequently, for simplify, this paper assumes that the risk factors governing mortality 

intensity function are income, gender, age, and others such as marital status, religion, health 

behaviors, smoking, alcohol, and obesity. This research assumes the intensity functions of gender, 

age, and other factors are deterministic functions. To portray the dependence on mortality 

process on the state of these risk factors, we introduce the enlarged filtration 0)( ≥= ttGG  to 

satisfies G = I
F H∨ ; ie., tG = I

t t
F H∨  for any t∈ +� , where )0),(( tssIF

I

t ≤≤= σ  contains 

complete information on the personal income and { }(1 , )
i

i
t s

H s tκσ ≤= ≤ , i =1,2,…n. { }⋅1  is the 

indicator function. ( )I t  refers to the time-t personal income. Consequently, for a policyholder 

of age x t+ , the mortality probability from time t  to T  given the information until time t is 

modeled as:         
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        ( ) 1 exp [ ( )] 1 exp [ ( )]
x T T

I i

i T t i i
x t t

P T F H I s ds I s ds
+

κ λ λ
+     ≤ ∨ = − − = − −       ∫ ∫       (2) 

We assume that the point processes governing mortality for the gender, age, income, and other 

risk factors is: 

 

 

where ( )
gender

Z t  is a dummy variable; it equals 1 if female or 0 otherwise. ( )B t  refers to the 

saving account and then 
( )

log
( )

I t

B t

 
 
  

 represents the present logarithmic personal income in the 

cause of being consistent with the empirical evidence that the resulting relation between health 

and income produces a curve line instead of a straight line. This could result from non-linear 

relations between health and commodities or environmental factors that affect health (Godfrey, 

1989) or it could arise from non-linear associations between income commodities or 

environmental factors that affect health (Edwards, Babor, 1994 and Atkinson, Gomulaka, and 

Stern, 1990). For simplicity, hence, the linear mortality rate function admits the following 

representation: 

                      
( )

( ) ( ) ( ) ( ) log
( )

o g a I

i i i i i

I t
t t t t

B t
λ λ λ λ λ

 
 = + + +   

                  (3) 

where g

i
λ  measures the sensitivity of entity i  to the difference of gender, a

iλ  represents the 

sensitivity of entity i  to the level of age, and I

i
λ  estimates the sensitivity of entity i  to the 

logarithmic personal income. o

i
λ  represents the sensitivity of entity i  to the others variables 

such as marital status, religion, health behaviors, smoking, alcohol, and obesity. According to the 

results of Brown and McDaid (2003), o

i
λ , g

i
λ , and a

iλ  should be positive, whereas I

i
λ  

( )
( ) ( ), ( ), ( ), log

( )
gender

I t
t f others t Z t age t

B t
λ

      =       
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should be negative. For simplicity, following the certain studies such as Koo (1998), 

Nejadmalayeri and Patrick (2003), and Venegas-Martínez (2006), this study assumes that 

personal income ( )I t  follows a geometric Brownian motion, and then the stochastic differential 

equation is given by: 

                           ( ) ( ) ( ) ( )
I

I tdI t r t I t dt I t dWσ= + ,                     (4) 

where ( )r t  is the instantaneous return of personal income. I

tW  standards for Brownian motion 

with respect to tF , and Iσ  denotes the volatilities of return on personal income. Therefore, it is 

noteworthy that under the setup of equality (3), applying equation (4), using the iterated 

expectations, the conditional mortality probability of 
i
κ  up to time ,T t≥ on the set { }i tκ >  

is presented in the following proposition. 

 

Proposition: The conditional mortality probability of each policyholder 
i
κ  admits the 

following representation: 

      ( )
2 3

2 2 2( ) ( )
) 1 exp ( ) ( ) ( ) exp ( )

4 6

T
o g a I I

i t i i i i I i I
t

T t T t
T G s s s dsP(κ λ λ λ λ σ λ σ

 − −   ≤ = − − + + +       
∫        (5) 

Proof. 

      ( ) ( ) 1 exp( ( ) )
T

I i i

i t i T t t t
t

T G T F H G s ds GP E P Eκ κ λ
  ≤ = ≤ ∨ = − −      ∫               (6) 

Substitution of the linear intensity 
( )

( ) ( ) ( ) ( ) log[ ]
( )

o g a I

i i i i i

I s
s s s s

B s
λ λ λ λ λ= + + +  into (6), we 

obtain: 

( )I i

i T t t
T F H GE P κ ≤ ∨  

( )
1 exp ( ) ( ) ( ) log[ ]

( )

T
o g a I

i i i i t
t

I s
s s s ds G

B s
E λ λ λ λ

         = − − + + +              
∫       
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Let 
1 3

( )
log[ ]

( )

T

t

I s
Y ds

B s
λ≡−∫ , then we have: 

1

2

2

( )
log[ ]

( )

( ) 1
log[ ] ( )

( ) 2

( ) 1
log[ ]( ) ( )

( ) 2

T
I

i
t

T s
I I

i I I v
t t

T T s
I I I I

i i I i I v
t t t

I s
Y ds

B s

I t
s t dW ds

B t

I t
T t s t ds dW ds

B t

λ

λ σ σ

λ λ σ λ σ

=−

 =− − − +    

=− − + − −

∫

∫ ∫

∫ ∫ ∫

 

2( ) 1
log[ ]( ) ( - ) -

( ) 2

T T T
I I I I
i i I i I v

t t v

I t
T t s t ds ds dW

B t
λ λ σ λ σ= − − + ∫ ∫ ∫     

2( ) 1
log[ ]( ) ( ) ( )

( ) 2

T T
I I I I

i i I i I v
t t

I t
T t s t du T v dW

B t
λ λ σ λ σ=− − + − − −∫ ∫  

Without loss of generality, it assumes that 1)()( == tBtI , and then the following result will be 

obtained: 

2
2

1

( )
( )

4

T
I I I

i I i I v
t

T t
Y T v dWλ σ λ σ

−
= − −∫  

Therefore, we have: 

( ) 11 exp ( ) ( ) ( ) exp( )
T

o g a

i t i i i t
t

T G s s s ds Y GP( ) Eκ λ λ λ
   ≤ = − − + +     ∫  

    ( ) 1 1

1
1 exp ( ) ( ) ( ) exp ( ) ( )

2

T
o g a

i i i t t
t

s s s ds Y G Y GE Vλ λ λ
  
 = − − + + +       

∫  

   
( )

2 3
2 2 2( ) ( )

1 exp ( ) ( ) ( ) exp ( )
4 6

T
o g a I I

i i i i I i I
t

i

T t T t
s s s ds

Q

λ λ λ λ σ λ σ
 − −   = − − + + −       

≡

∫        

where E( )⋅  and V( )⋅  are respectively the conditional expectation and variance with respect to 

tG , respectively.  

Using the chain rule of differentiation and the properties of 0I

i
λ <  and , , 0o g a

i i i
λ λ λ > , we have: 
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2

2

2

( - ) 1 ( - )
( ) >0

2 2 3

I Ii i

i i

I

Q Q T t T t
λ λ

σ

∂  
= − − ∂  

,                    

         ( ) ( )
2

2( )
( ) ( ) ( ) ( )( ) 0

2

o g a I Ii i

i i i i i i

Q T t
Q T T T T t

T

σ
λ λ λ λ λ

∂ − 
= − − + + + − − > ∂  

.        (7)   

    The results of equation (7) indicate that the mortality probability of policyholder i  is 

increasing with the volatilities of return on personal income 2

I
σ  and this result is consistent with 

Brenner (2005). He indicates that volatility of changes in that rapid economic growth was – in 

the very short-term – a source of increased mortality experienced of the United States 1901–2000. 

Further, the mortality probability of policyholder i  is also increasing with the maturity T  of 

contract. This makes sense that when the transaction time of contract is longer, the higher 

probability that policyholders maybe die during the transaction period. 

 

3. Mortality dependence 

    Recall the literatures about securitization of mortality risk, Lin and Cox (2005) assume that 

the mortality distributions of policyholders are independent when pricing mortality bonds and 

swaps with embedded option. However, mortality dependence for the portfolio of life insurance 

plays an important role when forecasting improvements in mortality is under consideration 

seriously. Furthermore, when the structured mortality product is priced, mortality dependence for 

the portfolio of life insurance affects the likelihood of extreme outcomes in the portfolio of life 

insurance. Thus mortality dependence for the portfolio of life insurance should also be 

emphasized and the joint mortality probability for the portfolio of life insurance should be 

projected accurately in hedging or pricing the securitization of mortality risk. To estimate the 

joint mortality probability for the portfolio of life insurance, this study will present a useful 
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instrument, called copula
6
 for the joint mortality probability, to capture the characteristics of 

mortality dependence.  

 

3.1. Multivariate copula  

    A copula function, dnoted by 
1 2

( , ,..., )
n

C u u u , represents the joint cumulative distribution 

function (c.d.f.) of n  standard uniform random variables 1 2, ,..., nU U U : 

1 2 1 1 2 2
( , ,..., ) ( , ,..., ).

n n n
C u u u P U u U u U u= ≤ ≤ ≤  

    Let 1 2, ,..., nκ κ κ  be death time of n  policyholders, with 1 2, ,..., nF F F  their marginal 

c.d.f.’s. Considering the joint mortality probability of n  life insurance and strictly increasing 

monotonicity for c.d.f.’s, we have: 

1 2 1 1 2 2

1 1 1 1 2 2 2 2

( , ,..., )=P( , ,..., )

P ( ( ) ( ), ( ) ( ),... ( ) ( ))

n n n

n n n n

F T T T T T T

F F T F F T F F T

κ κ κ

κ κ κ

≤ ≤ ≤

= ≤ ≤ ≤
 

By the version of Sklar’s Theorem (1959), for any multivariate distribution function 

1 2
( , , ... )

n
F T T T  with marginal c.d.f. nFFF ,...,, 21 , there exists a Copula C unique on 

1 2Ran Ran ..... Ran nF F F× × ×  such that: 

1 2
( , ,... )

n
F T T T =

1 1 2 2
( ( ), ( ),..., ( ))

n n
C F T F T F T , 

where 

     ( )=P ( )i i i i tF T T Gκ ≤  

          ( )
2 3

2 2 2( ) ( )
1 exp ( ) ( ) ( ) exp ( )

4 6

iT
o g a I Ii i
i i i i I i I

t

T t T t
s s s dsλ λ λ λ σ λ σ

 − −   = − − + + −       
∫ , 1, 2,...,i n= . 

Further, a corollary of Sklar’s Theorem (1959) is that: 

                                                 
6 Copulas are a very general tool to describe the interrelation of several random variables. Although the immense generality is also the drawback 

of copulas (detailed discussions see Rank (2006)), it is remarkable that the use of copulas has greatly improved the modeling of dependence in 

practice. For example, in contrast to linear correlation, the use of copulas avoids typical pitfalls and therefore leads to a mathematically consistent 
modeling of dependence. For an extensive discussion of copulas, we would like refer the reader to Nelsen (1999) for a formal framework. 
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-1 -1 -1

1 2 1 1 2 2
( , ,..., ) ( ( ), ( ),..., ( ))

n n n
C u u u F F u F u F u= , 

where -1 -1 -1

1 2
, ,...,

n
F F F  are quasi-inverses of 

1 2
, ,...,

n
F F F . 

 

3.2. Multivariate Clayton copula  

    Among the copula family, Clayton copula has been frequently applied in the actuarial field. 

For instance, Bassan and Spizzichino (2005) consider bivariate survival models characterized by 

the condition that bivariate aging function is a Clayton copula. Clayton copula can characterize 

tail dependence in multidimensional data and allows for asymmetric tail dependence. Hence, this 

paper extends Bassan and Spizzichino (2005) bivariate survival model to obtain multivariate life 

insurance by using multivariate Clayton copula. 

     Let ϕ be a generator:[0,1] [0, ],→ ∞ which is continuous, strictly decreasing '( )<0uϕ  for 

all [0,1]u ∈ . Then the function :[0,1] [0,1]nC →  

-1
1 2 1 2( , ,..., ) ( ( ) ( ) ... ( ))n nC u u u u u uϕ ϕ ϕ ϕ= + + +  

is the Archimean n -variate copula with generator ϕ . 

    Clayton copula function is one of one-parameter Archimedean copula. Let -( )= -1u u
θϕ  be 

a continuous strictly deceasing function such that (0)=ϕ ∞  and (1)=0ϕ , then 
1

-
1( )=( 1)u u θϕ − +  

is the inverse of ( )uϕ . Then, for all 2n ≥ , the function n:[0,1] [0,1]C
θ

→  defined as  

1

1 2
1

( , ,..., ) exp - (- ln )
n

n i
i

C u u u u
θ

θ

θ
=

   =      
∑  

is an n -dimensional Clayton copula, where 1θ >  is the dependence parameter. 

    In a representative set of well-known one-parameter systems of copulas, includes Clayton 

copula, there exists a one-to-one relationship between the real-valued dependence parameter, θ, 
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and Kendall’s non-parametric measure of association, τ. For Clayton copula Cθ , one has
7
: 

1

-10

( )
1 4

2( )

u
du

u

ϕ θ
τ

θϕ
= + =

+∫  

It gives the product copula (independence; 0τ = ) if 0θ = , the lower Frechet bound (perfect 

negative dependence; 1τ = − ) when 1θ = − , and the upper one (perfect positive dependence; 

1τ = ) for θ → ∞ . 

 

3.3.  Simulate the death time via Clayton copula approach  

    As suggested by Cherubini, Luciano, and Vecchiato (2004), a general method to simulate 

death time drawn from the Clayton copula is formulated by using a conditional approach. Since 

1
,...,

n
U U  has the joint distribution function 

-1
1 2 1 2( , ,.., ) ( ( ) ( ) ... ( ))n nC u u u u u uϕ ϕ ϕ ϕ= + + + , 

then the conditional distribution of  
k

U  given the values of 
1 1
,...,

k
U U

−
 is given by: 

1 2 -1 1 1 -1 -1
( , ,..., ) P( ,..., )

k k k k k k
C u u u u U u U u U u= ≤ ≤ ≤  

              
-1

1 1 -1

-1
-1 1 -1 1 -1

( ,.., ) ..

( ,.., ) ..

k
k k k

k
k k k

C u u u u

C u u u u

∂ ∂ ∂
=

∂ ∂ ∂
 

              
-1( 1) -1( 1)

1 2

-1( -1) -1( -1)
1 2 -1 -1

( ( ) ( ) ... ( )) ( )

( ( ) ( ) ... ( )) ( )

k k
k k

k k
k k

u u u c

u u u c

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

− −+ +
= =

+ +
,  

where 
1

( )
k

k i

i

c uϕ
=

=∑  and 2,..,k n= . 

Hence, the general procedure for simulating the death time via Clayton copula approach in a 

multivariate setting is as follows: 

� Simulate n  independent random variables 1 2( , ,..., )nv v v from (0,1)U . 

                                                 
7
 The most widely known scale-invariant measures of association are Kendall’s tau and Spearman’s rho. Because that Spearman’s rho of the 

Clayton copula shows complicated expression, this paper uses Kendall’s tau as the dependence measure of the Clayton copula. (See Cherubini, 
Luciano, and Vecchiato (2004), p.126). 
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� Set 1 1u v= . 

� Set 
-1(1)

2
2 2 2 1 2 2 1 1 -1(1)

1

( )
( ) P( )=

( )

c
v C u v U u V v

c

ϕ

ϕ
= = ≤ = , where 1 1 1( ) -1c u u

θϕ −= =  and 

- -
2 1 2 1 2( ) ( ) - 2c u u u u

θ θϕ ϕ= + = + .  

    Hence, 

1
1

1 2
2

1

+ 1u u
v

u

θ θ θ

θ

− −
− −

−

 −
=  
 

and then 

1

1
2 1 2( 1) 1u v v

θ θ
θ θ

−
−

− +
 

= − + 
 
 

. 

� Set 

1
2

-1(2)
3 1 2 3

3 3 3 1 2 3 3 1 1 2 2 -1(2)
2 1 2

( ) + + 2
( , ) P( , )=

( )

c u u u
v C u v v U u V v V v

c u u

θ θ θ θ

θ θ

ϕ

ϕ

− −− − −

− −

 −
= = ≤ = = =  

+ 
, 

and then 

1

2 1
3 1 2 3(u u ( 1) 2u v

θ θ
θ θ θ

−
−

− − +
 
 = + − +   
 

. 

� Using the same way, we can solve nu  through the following equation:  

1
1

1 2
n

1 2 -1

... 1

... 2

n

n

n

u u u n
v

u u u n

θ θ θ θ

θ θ θ

− − +− − −

− − −

 + + + − +
=  

+ + + − + 
, 

and get: 

1

(1- )-1
1 2 -1( ... - 2 ( 1) 1n

n n nu u u u n v

θ θ
θ θ θ θ

−
−

− − −
 
  = + + + + − +  
 

. 

� Get the death time of policyholder i : 1( ), 1,...,
i i

F u i nκ −= = , 

where ( )
2 3

2 2 2( ) ( )
1 exp ( ) ( ) ( ) exp ( )

4 6

iT
o g a I Ii i

i i i i i I i I
t

T t T t
u s s s dsλ λ λ λ σ λ σ

 − −   = − − + + −       
∫  

  That is: 

    ( )
2 3

2 2 2( ) ( )
inf :1 exp ( ) ( ) ( ) exp ( )

4 6

iT
o g a I Ii i

i i i i i I i I i
t

T t T t
t s s s ds uκ λ λ λ λ σ λ σ

  − −     = − − + + − ≤            
∫  
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Hence, given the coefficients of 2, , ,o g a

i i i I
λ λ λ σ , the implied death time 

i
κ  can be solved. 

    When death time of each policyholder for multiple life insurance is obtained precisely, it is 

very useful and favorable for the insurer to compute some important subjects such as the 

premium, reserves, and price of insurance securitization. This paper attempts to apply death time 

of each policyholder to the securitization of life insurance with mortality dependence by 

adopting multiple Clayton copulas. In the following section, we will design and price a new 

mortality-linked security called Collateralized Insurance Obligation, which is the generalization 

of the securitization of Lin and Cox (2005) and is different from mortality swap and mortality 

bond illustrated in the prior studies.  

 

4. Application: Collateralized Insurance Obligation  

4.1. Motivation 

    Lin and Cox (2005) assume that the underlying annuity insurances in the mortality bonds or 

swaps face the same insurance amount. In addition, the mortality bond links to all mortality risk 

of the underlying annuity insurances and this infers that all bond investors with different risk 

preferences face the same mortality risk on the underlying annuity insurances. On the contrary, 

Collateralized Insurance Obligation is linked to a portfolio of life insurance with different 

insurance amount and degree of mortality risk. Hence, the investors can invest various tranches 

of CIO which are discriminated by the mortality risk according to their risk preferences. Further, 

reinsurers can avoid the counterparty risk that may arise with traditional reinsurance. In practice, 

CIO may address some important market imperfections. First, securitization of mortality risk for 

insurance policies could reduce insurer’s reserves and let the allocation of capital becomes more 

flexible. Second, insurance policies may be illiquid and lead to a reduction in their market values, 
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while securitization may improve liquidity, and thereby raise the total value for the issuer of the 

CIO structure. 

 

4.2. The structure of CIO 

CIO can be viewed as the form of liability-backed bonds whose underlying collateral is 

typically a pool of life insurances. The structure and cash flow diagram of the CIO is showed in 

Figure 1, and is similar to that of Collateralized Debt Obligation (CDO). The insurance company 

pays the premiums P  to Special Purpose Vehicle (SPV) for mortality swap. SPV issues three 

tranches (senior tranche, mezzanine tranche, and equity tranche) of the CIO to investors with 

different degree of mortality risk preferences. SPV invests the swap premium P  and cash from 

the sale of bond, 
1

A=
n

i

i

A
=
∑ , in default-free bonds with coupon rate ( )D t . The different tranche 

investors receive different regular tranche premiums W , which is equial to swap premium P  

plus coupon rate of default-free securities ( )D t , and receive the full nominal value of contract 

A . If the loss on the underlying collateral portfolio occurs, the tranche investor will receive the 

residual nominal value of contract A ( )L t− .  
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Fig. 1.  The structure and cash flow diagram of the CIO 

 

4.3. The payoff of CIO 

    Let us consider the reference portfolio including n  life insurance policies. Let 
i

L  denote 

the net loss of issuer as the policyholder i  dies. Set { }i

( ) 1
i t

N t
κ ≤

=  be the counting process 

which jumps from 0 to 1 at death time of the policyholder i . Furthermore, ( )L t  displays the 

total cumulative loss amounts of policyholders portfolio at t  and can be expressed as: 

1

( ) ( )
n

i i

i

L t L N t
=

=∑  

which is thus a pure jump process. 

    Let us consider a tranche of a CIO, where the death payment pays all losses that occur on 

the collateral portfolio, above a threshold C  and below a threshold D  where 

1

0 A
n

i

i

C D A
=

≤ ≤ ≤ =∑ . It is called the equity tranche when 0C = ; if 0C>  and 
1

n

i

i

D A
=

<∑ , 

it is defined as the mezzanine tranche, and as 
1

n

i

i

D A
=

=∑ , it is regarded as senior or super-senior 

C
o

u
p

o
n

( )D t 
 

 

 Nominal    

 Value of   

 Contract 

  (A)  

Nominal Value of 

Contract (A)  

  

 Payment ( )L t    

  

 Premium ( )P    

Insurance 

company  

 

  SPV 

Senior tranche 
investor 

Mezzanine 
tranche investor 

Equity tranche 
investor 

Collateral 

 (Default-free bonds) 

Residual Nominal 

Value of Contract 
 (A ( ))L t−  

Tranche Premium 

( ( ))W P D t= +  
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tranches. ( )M t  denotes the cumulative losses on a given tranche. These losses are equal to zero 

if ( )L t C≤ , is equal to ( ) ,L t C− if ( )C L t D< ≤ and is equal to D C−  if ( )L t D> . This can 

be summarized as: 

( )
{ },

1

,

( ) ( ) 1 ( ) ( )1 ( )
n

C D

i

i

D A

M t L t C L t D C L t

=

         

= − + −
∑

. 

We notice that both ( )L t , ( )M t  are a pure jump process. 

    Under the risk-neutral probability measure P , we can write the price of the death payment 

of the given tranche as: 

0 0 0
exp( ( ) ) ( ) (0, ) ( )

T t T

E r u du dM t E B t dM t
P P

DP
   

= − =         ∫ ∫ ∫  

where ( )r u  denotes the spot rate, and T  denotes the maturity of the CIO.  

    It can be considered that we only need the information of the first moment of the cumulative 

loss on the tranche. This work can be computed if the distribution of total losses has been 

simulated by Monte-Carlo simulation. We apply the extended Vasicek model to describe the 

randomness of spot rate ( )r u , then the stochastic differential equation is given by: 

r

tr dWdttrtttrd σαθ +−= )]()()([)( ,                 

where  )(tθ  represents the long-term equilibrium value of the process; )(tα  is a nonnegative 

mean reversion speed; and rσ  is the volatilities of spot rate. r
tW  standards for Brownian 

motion with respect to tF . 

    The fair spread (or equivalently the fair premium) of that tranche can be found by putting 

into an equivalence of the death payment to the premium payment. In this case, the premium 

payment can be written as follows: 
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[ ] [ ] [ ] [ ]1, 1,( ) ( )

1 1

(0, ) (0, ) ( )
m m

i i i i i iL t C C L t D

i i

E W B t D C W B t D L t
P

m m
PP lim lim− −≤ ≤ ≤→∞ →∞

= =

 
 = ∆ − Ι + ∆ − Ι
  
∑ ∑

( )
0

(0, ) ( )P
T

W E B t g L t dt
 

= ⋅    ∫  

where ( ) [ ]{ }CDtLDtLg −−= ,0,)(maxmin)(  and ( )D C−  is the tranche size at inception, 

m  denotes all premium payment dates, 
i

t  denotes the premium payment date, 1,i i−∆ denotes 

the tenor between successive premium payment dates which take into account the day count 

convention, W  is the fair spread, ( ( ))D L t−  is the outstanding tranche notional at time 

[0, ]t T∈ , and, clearly 0 ( )M t D C≤ ≤ −  since 
1

0 ( )
n

i

i

L t A
=

≤ ≤∑  for all t . 

    Under the condition of no arbitrage market, the initial expected return equals to expected 

loss, i.e., PP=DP , thus the fair premium W  on different level of tranche can be computed as:  

                       

( )

P

0

P

0

(0, ) ( )

(0, ) ( )

T

T

E B t dM t

W

E B t g L t dt

 
  =

 
  

∫

∫
                         (8) 

    From the equation above, we know that the pricing of the CIO involves the computation of 

aggregate loss distributions over different time horizons ( )L t . Thus, CIO tranche premiums 

depend upon the individual mortality risk of reference portfolio and the dependence structure 

between mortality rate of n  life policies. We remark that the only thing we need in order to 

price each CIO tranche is to obtain the simulated counting process ( )
i

N t  via the Clayton copula 

framework. 

 

5. Numerical analysis 

    Since there is no close-form solution for tranche premium of CIO based on the result of 
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equation (8), this research uses Monte-Carlo simulations to estimate the tranche premium of CIO. 

One parameter will happen to play a key role: the measure of dependence among the policies: 

Kendall’s tau, τ . First, this study recapitulates the values chosen for the input parameters and 

calculates the premium of CIO. In addition, it also examines the sensitivity of dependence among 

the policies to the premium of each tranche. 

    In order to simulate the premium for different tranches of CIO, the following assumptions 

are made: 

 

5.1. Assumption for input parameters 

� Maturity of CIO: 10T = . 

� Number of life insurance policies: 12n = ; Benefits (insurance amounts) of 12 policies are 

listed in Table 1.  

� Maximum loss of the three tranches: equity=680 (680÷1700=40%), mezzanine=340 

(340÷1700=20%), and senior=680 (680÷1700=40%). Measure of dependence among the 

policies, Kendall’s tau, τ =0.5.  

� Mortality intensity of other factors: 0λ = 0.1 ; mortality intensity for male: 1

gλ =0.018 and 

0.015 for female; mortality rate for different level of age: 2

aλ =0.1; and the sensitivity of the 

logarithmic personal income: 3λ = -0.1.  

� Initial term structure is flat and satisfies [ ]( , ) exp -0.01 ( - )B t T T t= × ; volatilities of return 

on personal income Iσ  is 0.01; and the mean reversion speed of Vasicek model: 

( )tα =0.0254.  

� Simulations: 20,000 times. 
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5.2. Computation of premium for each tranche 

    Based on the data above and the simulation process of Section 3.3, the death time of each 

policyholder, can be estimated and is displayed by the way that the smallest death time is on the 

top and the highest death time is in the button in Table 2. Table 2 represents that 5 policyholders 

die prior to maturity of contract (10 years) in 12 policyholders. Table 3 and Table 4 show the 

loss of sample path for each tranche and average nominal present value in each year, respectively. 

Table 3 indicates that the loss of sample path for equity tranche, mezzanine tranche, and senior 

tranche are 631.415, 309.406, and 208.973, respectively. Table 4 reports the total average 

nominal present values for equity tranche, mezzanine tranche, and senior tranche to be 4814.095, 

2414.499, and 4814.095, respectively. Taking the equity tranche as an example, the death 

payment for equity tranche equals:  

100exp(-0.01 5.1153)+300exp(-0.01 6.6236)+200exp(-0.01 9.0933)+80exp(-0.01 9.139)

=631.415.

× × × ×
 

Besides, the average nominal principal for the 10 years are 680, 680, 680, 680, 680, 591.523, 

467.080, 280, 280, and 8.058, respectively. Consequently, the premium for equity tranche equals: 

[

]

W 680exp(-0.01 1) +680exp(-0.01 2)+680exp(-0.01 3)+680exp(-0.01 4)

+680exp(-0.01 5)+591.530exp(-0.01 6)+467.080exp(-0.01 7)+280exp(-0.01 8)

+280 exp(-0.01 9)+8.058 exp(-0.01 10) 4814.095W

× × × ×

× × × ×

× × × × =

 

Based on the equation (8), the premium of equity tranche W can be computed to be 0.13116 

(631.415÷4814.093). Using the similar computation, the premiums of mezzanine and senior 

tranches are 0.128145 (309.406÷2414.499) and 0.043409 (208.973÷4814.095), respectively. 

 

5.3. Sensitivity of Kendall’s tau 

    Fig. 2 reports the tranche premium as a function of Kendall’s tau for three tranches. It 
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shows that the equity tranche has the highest premium, the premium of mezzanine tranche ranks 

secondary, and senior tranche has the lowest. Based on the results, it can be concluded that 

equity tranche has the highest mortality risk in virtue of abiding by the foremost loss, and senior 

trnache has the lowest mortality risk which results from bearing the loss lastly. Therefore, the 

investors of equity tranche require larger premium due to bearing the foremost loss. Further, 

Figure 2 shows that the equity tranche is negatively related to Kendall’s tau, τ . This implies 

that the independence assumption ( 0τ = ) tends to overestimate the premium of equity tranche. 

This phenomenon also can be found in the mortality swap and bond with independence 

assumption considered by Lin and Cox (2005). On the contrary, as Kendall’s tau rises up, the 

tranche premiums of mezzanine increase gradually and approach the value of 0.06 and the  

tranche premiums of senior go up with a steeper slope than that of mezzanine. It implies that the 

independence assumption ( 0τ = ) tends to underestimate both the premiums of mezzanine and 

senior. The reason is that low dependence among the policies reduces the probability of extreme 

loss and then results in low exposure in the mezzanine and senior tranches. On the other hand, 

low dependence among the policies will decrease the possibility of zero, thus the premium of the 

equity tranche decreases when Kendall’s tau increases.  

 

6. Conclusions 

    Being different from assumption of Lin and Cox (2005) that individual mortalities of 

policyholders are independent, this article attempts to propose the securitization in life insurance 

with morality dependence. The stochastic morality intensity of involving some risk factors (such 

as income, gender, age and other factors) governing mortality intensity function is also taken into 

consideration. By extending bivariate survivor model of Bassan and Spizzichino (2005), this 
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study considers the correlation of multiple life insurances with Clayton copula for the joint 

mortality probability and then the premium for equality tranche, mezzanine tranche, and senior 

tranche are estimated.  

    It is the first study to design and price a new mortality-linked security, CIO. This security 

allows investors to invest various tranches of CIO which are discriminated by the mortality risk 

according to their risk preferences. Numerical results of CIO discover that the premium of equity 

tranche is a decreasing function of Kendall’s tau. This implies that the independence assumption 

tends to overestimate the premium of equity tranche. This phenomenon of overestimation also 

can be found in the mortality swap and bond with independence assumption proposed by Lin and 

Cox (2005). On the contrary, the premiums of mezzanine tranche and senior tranche are 

increasing functions of Kendall’s tau. It implies that the independence assumption tends to 

underestimate the premiums of mezzanine tranche and senior tranche. These results are very 

important because it reveals the necessity to consider the mortality dependence. Without 

considering mortality dependence, the insurance company will misprice the premiums of 

different tranches CIO. Hence, this article provides the insurance company a more accurate 

pricing method for CIO.   
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                  Table 1  

                         Benefits of reference life insurance policies 

Policy Benefits Ratio 

Policy 1 450 26.47% 

Policy 2 300 17.65% 

Policy 3 100 5.88% 

Policy 4 200 11.76% 

Policy 5 25 1.47% 

Policy 6 50 2.94% 

Policy 7 100 5.88% 

Policy 8 100 5.88% 

Policy 9 50 2.94% 

Policy 10 200 11.76% 

Policy 11 50 2.94% 

Policy 12 75 4.41% 

    Total 1700   100% 

 

                           

 

            Table 2 

               The estimation death time of each policy 

Policy Benefits Death time (year) Whether die prior to  

maturity or not 

Policy 8 100 5.115 yes 

Policy 2 300 6.624 yes 

Policy 10 200 9.093 yes 

Policy 4 200 9.139 yes 

Policy 1 450 9.588 yes 

Policy 3 100 10.08 no 

Policy 7 100 10.357 no 

Policy 11 50 11.432 no 

Policy 6 50 15.493 no 

Policy 12 75 15.786 no 

Policy 9 50 15.923 no 

Policy 5 25 20.135 no 
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           Table 3 

             The loss of sample path for each tranche 

Year/Tranche  
Equity 

Tranche 

0~680    

Mezznine 

Tranche 

681~1020 

Senior 

 Tranche 

1021~1700 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 100 0 0 

7 300  0 0 

8 0 0 0 

9 0 0 0 

        10 280 340  230 

Cumulative loss 680 340 230 

Present value of loss 631.415 309.406 208.973 

 

  
Table 4 

Average nominal present value in each year 

Year/Tranche 

Equity 

Tranche 

0~680   

Present value 

Mezznine 

Tranche 

681~1020 

Present value 

Senior 

 Tranche 

1021~1700 

Present value 

    1 680.000  673.234  340.000  336.617  680.000  673.234  

    2 680.000  666.535  340.000  333.268  680.000  666.535  

    3 680.000  659.903  340.000  329.952  680.000  659.903  

    4 680.000  653.337  340.000  326.668  680.000  653.337  

    5 680.000  646.836  340.000  323.418  680.000  646.836  

  6 591.530  557.082  251.530  236.882  591.530  557.082  

7 467.080  435.503  149.664  160.293  467.080  435.503  

8 280.000  258.473  171.916  158.698  280.000  258.473  

9 280.000  255.901  171.916  157.119  280.000  255.901  

10 8.058  7.291  57.009  51.584  8.058  7.291  

Total average 

nominal  

present value 

  

4814.095  

 

2414.499  

 

4814.095  
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Fig. 2. Tranche premium as a function of Kendall’s tau 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 T
ra

n
c
h

e
 P

re
m

iu
m

CIO Premium as a Function of Kendall’s tau among the Policies under Different Trance CIO Premium as a Function of Kendall’s tau among the Policies under Different Trance CIO Premium as a Function of Kendall’s tau among the Policies under Different Trance CIO Premium as a Function of Kendall’s tau among the Policies under Different Trance 

Equity Tranche

Mezzanine Tranche

Senior Tranche

KendallKendallKendallKendall’s tautautautau    



 29 

References 

1. Atkinson, A., Gomulaka J., Stern N., 1990. Spending on alcohol: evidence from the 

family expenditure survey 1970–1983. Economic Journal 100, 808–827. 

2. Attanasio, O. P., Emmerson C., 2001. Differential mortality in the UK. Working 

paper, National Bureau of Economic Research.  

3. Biffis, E., 2005. Affine processes for dynamic mortality and actuarial valuations.  

Insurance: Mathematics and Economics 37, 443-468. 

4. Blake, D., Burrows, W., 2001. Survivor bonds: helping to hedge mortality risk. 

Journal of Risk and Insurance 68, 339-348. 

5. Brenner, M., 2005. Commentary: Economic growth is the basis of mortality rate 

decline in the 20th century—experience of the United States 1901–2000. International 

Journal of Epidemiology 34, 1214-1221. 

6. Brown, R. L., McDaid, J., 2003. Factors affecting retirement mortality. North 

American Actuarial Journal 7, 24-43. 

7. Cherubini, U., Luciano, E., Vecchiato, W., 2004. Copula Methods in Finance. John 

Wiley and Sons, Ltd. 

8. Cox, J. C., Ingersoll J. E., Ross, S. A., 1985. A theory of the term structure of interest 

rates. Econometrica 53(2), 385–408. 

9. Dahl, M., 2004. Stochastic mortality in life insurance: market reserves and 

mortality-linked insurance contracts. Insurance: Mathematics and Economics 35, 

113–136. 

10. Deaton, A., Paxson G., 1999. Mortality, education, income, and inequality among 

American cohorts. Working paper, National Business of Economic Research.  



 30 

11. Edwards, G., Babor, T., Anderson,P., 1994. Alcohol Policy and the Public Good. 

Oxford University Press. 

12. Godfrey, C., 1989. Factors influencing the consumption of alcohol and tobacco: the 

use end abuse of economic models. British Journal of Addiction 10, 1123-1138. 

13. Hull, J., White, A., 1990. Pricing interest rate derivative securities. Review of 

Financial Studies 3(4), 573–592. 

14. Koo, Hyeng K., 1998. Consumption and portfolio selection with labor income: a 

continous time approach. Mathematical Finance 8, 49-65. 

15. Lando, D., 1998. On Cox processes and credit risky securities. Review of Derivatives 

Research 2, 99–120. 

16. Lee, R. D., Carter, L. R., 1992. Modeling and forecasting U.S. mortality. Journal of 

the American Statistical Association 87, 659-675. 

17. Lee, R., 2000. The Lee-Carter method for forecasting mortality, with various 

extensions and applications. North American Actuarial Journal 4, 80-93. 

18. Lin, Y., Cox, H., 2005. Securitization of mortality risks in life annuities. The Journal 

of Risk and Insurance 72, 227-252. 

19. Milevsky, M. A., Promislow, S. D., 2001. Mortality derivatives and the option to 

annuities. Insurance: Mathematics and Economics 29, 299–318. 

20. Nejadmalayeri, A., Patrick, C., 2003. Growth annuity: elixir of sustainable growth? 

Journal of the Academy of Business and Economics. 

21. Nelsen R. B., 1999. An Introduction to Copulas, Lecture Notes in Statistics No. 139. 

Springer, New York. 

22. Olivieri, A., 2001. Uncertainty in mortality projections: an actuarial perspective. 



 31 

Insurance. Mathematics and Economics 29, 231–245. 

23. Olivieri, A., Pitacco, E., 2002. Inference about mortality improvements in life 

Annuity Portfolios. In: Proceedings of the Transactions of the th27  International 

Congress of Actuaries, Cancun, Mexico. 

24. Parkes, C. M., Benjamin, B., Fitzgerald, R. G., 1969. Broken heart: a statistical study 

of increased mortality among widowers. British Medical Journal 22, 740–743. 

25. Pappas, F., Queen, S., Hadden, W., Fisher, G., 1993. The increasing disparity in 

mortality between socioeconomic group in the United States 1960 and 1986. New 

England Journal of Medicine 329(2), 103-109. 

26. Rank, J., 2006. Copulas - From Theory to Applications in Finance. Risk Books, 

London. 

27. Renshaw, A. E., Haberman, S., 2003. Lee-Carter mortality forecasting with 

age-specific enhancement. Insurance: Mathematics and Economics 33, 255-272. 

28. Schrager, D. F., 2006. Affine stochastic mortality. Insurance: Mathematics and 

Economics 38, 81-97. 

29. Sklar, A., 1959. Fonctions de repartition `a n dimensions et leurs marges. Publ. Inst. 

Statist Univ. Paris 8, 229-231.  

30. Sorlie, P. D., Backland, E., Keller, J. B., 1995. U.S. mortality by economic, 

demographic, and social characteristics: the national longitudinal mortality study. 

American Journal of Public Health 85, 949-956.   

31. Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of 

Financial Economics 5, 177–188. 

32. Venegas-Martínez, F., 2006. Stochastic temporary stabilization: Undiversifiable 



 32 

devaluation and income risks. Economic Modelling 23, 157-173. 

33. Ward, A., 1976. Mortality of bereavement. British Medical Journal 20, 700–702. 

34. Williams, D. R., Collians, C., 1995. U.S socioeconomic and racial differences in 

health: patterns and explanations. Annual Review of Sociology 21, 349-386. 


