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Abstract

In this study, we test the empirical pricing performance of Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975, 1996) and Cox and Ross (1976) and compare the results with those by Bakshi, Cao and Chen (1997). CEV model, introducing only one more parameter compared with Black-Scholes formula, improves the performance notably in all the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still performs better than the stochastic volatility model in short term and out-of-the-money categories. The empirical evidence also shows that the CEV model has similar stability of implied volatility those models tested by Bakshi, Cao and Chen (1997). Therefore, with much less implementational cost and faster computational speed, the CEV option pricing model can be a better candidate than much more complex option pricing models, especially when one wants to apply CEV process for pricing more complicated path-dependent options or credit risk models. 

1. Introduction

This study is intended to examine the empirical performance of Constant–Elasticity-of-Variance (CEV) option pricing model by Cox (1975)
 and Cox and Ross (1976), especially whether and by how much the generalization of the CEV model among prevailing option pricing models improves option pricing. In order to reduce the empirical biases of Black-Scholes (BS) (1973) option pricing model, succeeding option pricing models have to relax the restrictive assumptions made by the BS model: the underlying price process (distribution), the constant interest rate, and dynamically complete markets. The tradeoff is, however, more computational cost. 

To examine whether these generalized models worth the additional complexity and cost, Bakshi, Cao and Chen (1997) compared a set of nested models in which the most general model allows volatility, interest rate, and jumps to be stochastic (SVSI-J).  They examined four alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Their research showed that modeling stochastic volatility and jumps (SVJ) is critical for pricing and internal consistency, while introducing stochastic volatility (SV) alone yields the best performance for hedging.
 However, models not in the nested set were not evaluated in their empirical study. Therefore, this study is to include CEV model in the empirical investigation and examine the model performance.
Although CEV model is not as general and flexible as the SVJ model, its simplicity may still be worth exploring since the above mentioned models are expensive to implement. In particular, the above mentioned models, when applied to American option pricing, require high-dimensional lattice models which are prohibitively expensive.  On the other hand, the CEV model requires only a single dimensional lattice (Nelson and Ramaswamy (1990)).

The CEV model proposed by Cox (1975) and Cox and Ross (1976) is complex enough to allow for changing volatility and simple enough to provide a closed form solution for options with only two parameters. The CEV diffusion process also preserves the property of nonnegative values of the state variables as does in the lognormal diffusion process assumed in the Black-Scholes model (Chen and Lee, 1993). The early research of the CEV model was conducted by MacBeth and Merville (1980) and Emanuel and MacBeth (1982) to test the empirical performance and compared with the BS model. Recent studies of the CEV process include applications in path-dependent options and credit risk models.

MacBeth and Merville (1980) provided results on six stock options and showed that the CEV parameter
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 is generally less than two, which explains the empirical evidence for the negative relationship between the sample variance of returns and stock price. Manaster (1980) criticized the approach by MacBeth and Merville (1980) and suggested that (i) the CEV parameter 
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 and the volatility parameter 
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 should be estimated jointly without using the information (implied parameter
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ˆ

of at-the-money option) from BS model, and (ii) post-estimation testing should be conducted to see whether the CEV model continues to fit the observed date better than the BS model for the day or week following the parameter estimation. In response, Emanuel and MacBeth (1982) tested the post-estimation performance of CEV model but still using the same approach for parameter estimation. Recently, Lee, Wu, and Chen (2004) took S&P 500 index options as opposed to stock options to avoid the American option premium biases, but still employ similar two-step
 estimation to obtain the estimated 
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 and 
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. Also using the S&P 500 index to reduce market imperfections, Jackwerth and Rubinstein (2001) compared the ability of several models including CEV to explain otherwise identically observed option prices that differ by strike prices, times-to-expiration, or trade times. They found that the performance of the CEV model is similar to other models they tested, and those better performing models all incorporate the negative correlation between index level and volatility. 

Different from the previous empirical studies of CEV model, first, we jointly estimate parameters 
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 and 
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 by minimizing the sum of squared dollar pricing errors, absolute dollar pricing errors, and percentage pricing errors of daily market price and estimated price of options. Secondly, a “synchronized” dataset of stock prices and option prices by Bakshi, Cao and Chen (1997) is used
. We find that (i) In terms of in-sample performance, the squared sum of pricing errors of CEV model is similar to SV models in short-term and at-the-money options, but is worse in other categories and (ii) In terms of out-of-sample performance, the mean absolute errors and percentage errors show that the CEV model performs better than the SV model in short term and OTM categories. In addition, CEV is even better than SVJ in a few cases in these categories. 

The rest of the paper is organized as follows. Section 2 discusses the CEV model and the SVSI-J Model by Bakshi, Cao and Chen (1997). Section 3 describes the approach we use to compute the CEV option prices in terms of noncentral Chi-square distribution. Section 4 provides the empirical testing results, and Section 5 concludes.
2. CEV and SVSI-J Option Pricing Models
2.1 The Constant-Elasticity-of-Variance (CEV) Option Pricing Model

An important issue in option pricing is to find a stock return distribution that allows returns to stock and its volatility to be correlated with each other. There is considerable empirical evidence that the returns to stocks are heteroscedastic and the volatility of stock returns changes with stock price. Cox and Ross (Cox, 1975, 1996; Cox and Ross, 1976) proposed the constant elasticity of variance (CEV) model. The CEV model assumes the diffusion process for the stock is 

 (Eq 2.1) 
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If 
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=2, prices are lognormally distributed and the variance of returns is constant. This is the same as the well-known Black-Scholes model. If
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<2, the stock price is inversely related to the volatility. Cox originally restricted
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. Emanuel and MacBeth (1982) extended his analysis to the case
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 and discuss its properties. However, Jackwerth and Rubinstein (2001) find that typical values of the
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can fit market option prices well for post-crash period only when
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, and they called the model with 
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 unrestricted CEV
. In their empirical study, the difference of pricing performance of restricted CEV model (
[image: image19.wmf]0

³

b

) and BS model is not significant. 
When 
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<2, the nondividend-paying CEV call pricing formula is as follows:

(Eq 2.3)
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When 
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>2, the CEV call pricing formula is as follows:

(Eq 2.4)
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where
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 is the gamma density function
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C is the call price; S, the stock price; 
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, the time to maturity; r, the risk-free rate of interest; K, the strike price; and
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and
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, the parameters of the formula.
2.2 The Stochastic Volatility, Stochastic Interest Rate and Stochastic Jump Model (SVSI-J) 

Scott (1997) first derived a closed-form stochastic volatility, stochastic interest rates, and random jump option pricing model (SVSI-J) that includes all those to be studied in their empirical tests as special cases. Under the risk-neutral measure, the underlying nondividend-paying stock price
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(Eq 2.6) 
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(Eq 2.7) 
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where 
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is the time-t instantaneous spot interest rate;
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is the frequency of jumps per year
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is the percentage jump size(conditional on a jump occurring) that is lognormally, identically, and independently distributed over time, with unconditional mean 
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The European call option price by Bakshi, Cao and Chen (1997) is shown as follows: 

(Eq 2.8) 
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where the risk-neutral probabilities, 
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, are recovered from inverting the respective characteristic functions (see Bates(1996a, 2000) and Heston(1993) for similar treatments):

(Eq 2.9) 
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for 
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respectively given in equations(Eq 2.10) and (Eq 2.11). The price of a European put on the same stock can be determined from the put-call parity. 

(Eq 2.10) 
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(Eq 2.11) 
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The option valuation model in equation (2.8) has several distinctive features. First, it incorporates stochastic interest rates, stochastic volatility, and jump risk, which means it contains most existing models as special cases. For example, we can obtain (i) the BS model by setting 
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, where to derive each special case from equation (Eq 2.8) one may need to apply L’Hospital’s rule. In addition, they also derive the corresponding deltas of price risk
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3. Computing the Noncentral Chi-Square Distribution

Schroder(1989) shows that the CEV option pricing formula can be expressed in terms of the noncentral chi-square distribution functions. There exists an extensive literature to efficiently compute noncentral chi-square distribution (see Dyrting(2004), Benton and Krishnamoorthy (2003), Schroder(1989) and references therein). In this paper, the CEV formula in terms of the noncentral chi-square distribution expressed by Schroder(1989) is adopted to compute option prices. IMSL (International Mathematical and Statistical Library) is used for the computation of the noncentral chi-square probabilities.

Schroder(1989) expressed the CEV call option pricing formula in terms of the noncentral chi-square distribution:
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When 
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(Eq 3.2) 
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[image: image97.wmf])

1

)(

2

(

2

)

2

(

2

-

-

=

-

t

b

b

d

r

e

r

k



[image: image98.wmf]t

b

b

)

2

(

2

-

-

=

r

t

e

kS

x



[image: image99.wmf]b

-

=

2

kK

y


The complementary noncentral chi-square distribution function can be expressed as an infinite double sum of gamma functions as follows:

(Eq 3.3) 
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Schroder also presented a simple iterative algorithm to compute the infinite sum as follows:

(1) Initilaizing the following variables:
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(2) Looping with n=2 and incrementing by one after each iteration until the contributions t the sum,
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are becoming very small.
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Although the CEV formula can be represented more simply in the terms of noncentral chi-square distributions that are easier to interpret, the evaluation of the infinite sum of each noncentral chi-square distribution can be computationally slow when neither 
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are too large. This study uses the approximation derived by Sankaran(1963) to compute the complementary noncentral chi-square distribution 
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(Eq 3.4) 
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When neither 
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or
[image: image125.wmf]k

are too large (i.e., 
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<200 and
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<200 and no underflow errors occur), the exact CEV formula is used. Otherwise the approximation CEV formula is used. 

4. Empirical Tests and Results
In this section, we report the empirical results following the framework of Bakshi, Cao and Chen (1997) to facilitate the comparison of model performances. First, we describe the dataset in 4.1, and the option pricing models in 4.2. Then we present the empirical results of in-sample performance in 4.3, model misspecification in terms of volatility smile in 4.4, and out-of-sample performance in 4.5, respectively. 
4.1 Data Description

We use the S&P 500 call option price for the empirical work
. The sample period extends from June 1, 1988 through May 31, 1991. The intradaily bid-ask quotes for S&P 500 options are originally obtained from the Berkeley Option Database. The daily Treasury-bill bid and ask discounts with maturities up to one year are from the Wall Street Journal. Note that the recorded S&P 500 index are not the daily closing index level. Rather, they are the corresponding index levels at the moment when the option bid-ask quote is recorded. Therefore, there is no nonsynchronous price issue here, except that the S&P 500 index level itself may contain stale component stock prices at each point in time. 

For European options, the spot stock price must be adjusted for discrete dividends. For each option contract with 
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periods to expiration from time t, Bakshi, Cao and Chen first obtain the present value of the daily dividends 
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is the s-period yield-to-maturity. Next, they subtract the present value of future dividends from the time-t index level, in order to obtain the dividend-exclusive S&P 500 spot index series that is later used as input into the option models. 

Bakshi, Cao and Chen (1997) also exclude some samples with the following filters: (1) option price quotes that are time-stamped later than 3:00pm Central Standard Time are eliminated. This ensures that the spot price is recorded synchronously with its option counterpart. (2) Options with less than six days to expiration may induce liquidity-related biases. (3) Price quotes lower than $3/8 are not included due to the impact of price discreteness. (4) Quotes not satisfying the arbitrage restriction 
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 4.2 Option Pricing Models

We follow the framework of Bakshi, Cao and Chen (1997) and conduct the empirical tests in the CEV model. The testing results will then be compared with those of Bakshi, Cao and Chen (1997): (i) the Black-Scholes (BS) model, (ii) the stochastic-volatility (SV) model, (iii) the stochastic-volatility and stochastic-interest-rate (SVSI) model, and (iv) the stochastic-volatility random-jump (SVJ) model. The empirical results will focus on the CEV and four models as described above.

4.3 Structural Parameter Estimation and In-Sample Performance

4.3.1 Estimation Procedure

Step 1. Collect N option prices on the same stock and taken from the same point in time (or same day), for any N greater than or equal to one plus the number of parameters to be estimated. For each n=1,…,N, let
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(Eq 4.1) 
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Step 2. Find 
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(Eq 4.2)
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This step results in an estimate of the implied spot variance and the structural parameter values, for date t. Go back to Step 1 until the two steps have been repeated for each day in the sample. 

4.3.2 Implies Parameters and In-Sample Pricing Fit 

In light of the BS model’s moneyness- and maturity-related biases, researchers and practitioners have tried to find ways to estimate and use and “implied-volatility matrix.” To see how the candidate models are against each other under such a matrix treatment, we will estimate the models by using the six alternative sets of call options traded on a given day: short-term calls, medium-term calls, long-term calls, out-of-the-money (OTM) calls, at-the-money (ATM) calls, and in-the-money (ITM) calls. 

4.3.3 Empirical Results
As shown in Table 1, we compare the result of the CEV model with those of the BS, the SV, the SVSI, and the SVJ models obtained by Bakshi, Cao and Chen (1997). In all-option category, the SSE of the CEV model is lower than the SSE of the BS model, but higher than the SV, the SVSI, and the SVJ models. However, in short-term options category, the CEV model has lower SSE than the SV and the SVSI models, only higher than the SVJ model. Furthermore, the CEV model performs best even better than the SVJ model in at-the-money options category.  

4.4 Assessment of Relative Model Misspecification

As Rubinstein (1985) had done, the most popular diagnostic of relative model misspecification is to compare the implied-volatility patterns of each model across both moneyness and maturity. The procedure is as follows: First, substitute the spot index and interest rates of date t as well as the structural parameter values implied by all date (t-1) option prices, into the option pricing formula, which leaves only the spot volatility undetermined. Next, for each given call option of date t, find a spot volatility value that equates the model-determined price with the observed price of the call. Then, after repeating these steps for all options in the sample, obtain for each moneyness-maturity category an average implied-volatility value. 
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Figure 1 Implied Volatility Graph

Using the subsample data from July 1990 to December 1990 as Bakshi, Cao and Chen (1997), the average implied volatility of the CEV model is computed in Table 2. In Figure 1, the implied volatility graph is presented. For short-term calls, the CEV model still shows large U-shaped moneyness-related biases. However, the magnitude of the biases, 6.5%, is only slightly larger than that the SV model, around 6%. For medium-term and long-term calls, the moneyness-related smile of implied volatility is greatly reduced, and the corresponding magnitudes are only 1.68% and 1.36%, respectively, We can also find that the implied volatility of the CEV model in long-term options (maturity
[image: image148.wmf]³

180 days) is the most stable case compared with other maturity-based options. For those options with longer than 180 days to expiration, the volatility of the CEV model is more stable than all the other models including the SVJ model. 
4.5 Out-of-Sample Pricing Performance

In out-of-sample option pricing, the presence of more parameters may actually cause over-fitting and have the model penalized if the extra parameters do not improve its structural fitting. For this purpose, Bakshi, Cao and Chen rely on previous day’s option prices to back out the required parameter/volatility values and then use them as input to compute current day’s model-based option prices. Next, they subtract the model-determined price from its observed counterpart, to compute both the absolute and the average percentage pricing errors and their associated standard errors. This prevents the biases in the objective function (Eq 3.3) in favor of more expensive calls, such as long-term and ITM calls. To make our results comparable with those of Bakshi, Cao and Chen (1997), we also follow their approach by changing the objective function in (Eq 3.3) to absolute pricing errors 
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 (Table3) and percentage pricing errors 
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 (Table 4) .

Pricing errors reported under the heading “All-Options-Based” are obtained using the parameter/volatility values implied by all of the previous day’s call options; those under “Maturity-Based” are obtained using the parameter/volatility values implied by those previous-day calls whose maturities lie in the same category (short-term, medium-term, or long-term) as the option being priced; those under “Moneyness-Based” are obtained using the parameter/volatility values implied by those previous-day calls whose moneyness levels lie in the same category (OTM, ATM, or ITM) as the option being priced. 

As shown in Table 2, we compare the out-of-sample pricing errors of the CEV model with those of the BS, the SV, the SVSI, and the SVJ models from Bakshi, Cao and Chen (1997). We mark those results of the CEV model which are better or equal to the results of the SV model. In general, the out-of-sample pricing errors of the CEV model are in-between the BS model and the SVJ model. In OTM and part of the ATM option cases (S/K <1.00), the CEV model performs better than the SV model, while in the deep ATM and ATM options, the CEV model has larger pricing errors than the SV model. In Table 3, Percentage Pricing Errors of the CEV model also show similar results as those of absolute Pricing Errors. However, in Table 3, the CEV model performs slightly better in short-term (maturity<60) and worse in long-term (maturity
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180).
Finally, we should note that CEV model only produce negative percentage pricing errors for short-term OTM (
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 and days-to-expiration less than 60) options. This is slightly different from the observation of Bakshi, Cao and Chen (1997) that all models produces negative percentage pricing errors for options with moneyness
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, subject to time-to-expiration not exceeding 180 days.  

5. Conclusion

In this study, we test the CEV option pricing model and compare the results with those by Bakshi, Cao and Chen (1997). The CEV option pricing model performs better than the BS model in all cases. The empirical evidence shows that (i) In terms of in-sample performance, the squared sum of pricing errors of CEV model is similar to SV models in short-term and at-the-money options, and is worse in all options category. (ii) In terms of out-of-sample performance, the mean absolute errors and percentage errors of the CEV model show that CEV performs better than the SV model in short term and OTM cases. In addition, the CEV model is even better than the SVJ model in a few cases in these categories. (iii) In terms of model misspecification, by using implied volatility graph introduced by Rubinstein(1985), the volatility of CEV model is ranging between 21% and 23.5% in all maturity. For those options with less than 60 days to expiration, the volatility of CEV model is more stable than all the other models including the SVJ model. For longer-maturity options, the volatility smile of the CEV model is similar to SV model with around 2% fluctuation. 

In summary, the CEV model, introducing only one more parameter compared with BS formula, improves the performance notably in all the tests of in-sample, out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model, the CEV model can still performs better than the SV model in short term and OTM categories. The empirical evidence also shows that the CEV model has similar stability of implied volatility as SV, SVSI, and SVJ models. Therefore, with much less implementational cost and faster computational speed, the CEV option pricing model can be a better candidate than much more complex option pricing models, especially when one wants to apply CEV process for pricing more complicated exotic options or credit risk models. 
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	All Options

	
	CEV
	BS
	SV
	SVSI
	SVJ

	Implied Volatility (%)
	18.42
	18.23
	18.66
	18.65
	19.38

	SSE
	28.85
	69.6
	10.63
	10.68
	6.46

	
	
	
	
	
	

	Short-Term Options

	
	CEV
	BS
	SV
	SVSI
	SVJ

	Implied Volatility (%)
	18.37
	18.15
	18.45
	18.54
	20.65

	SSE
	4.75
	28.09
	5.48
	5.16
	2.63

	
	
	
	
	
	

	At-the-Money Options

	
	CEV
	BS
	SV
	SVSI
	SVJ

	Implied Volatility (%)
	18.51
	18.74
	18.48
	18.36
	19.03

	SSE
	3.51
	25.34
	5.98
	5.45
	5.31


Table 1 Implied Volatility and In-Sample Fit

	Maturity
	<60
	60-180
	>=180

	Moneyness (S/K)
	Average Volatility
	Number of Obs
	Average Volatility
	Number of Obs
	Average Volatility
	Number of Obs

	0.94<
	23.1709%
	238
	23.2591%
	846
	22.1351%
	540

	0.94-0.96
	21.6492%
	255
	22.1181%
	241
	21.8619%
	112

	0.96-0.98
	21.2072%
	290
	22.4297%
	242
	22.0806%
	94

	0.98-1.00
	21.3395%
	290
	22.7042%
	233
	22.5085%
	109

	1.00-1.02
	22.6581%
	288
	22.6880%
	218
	22.7989%
	94

	1.02-1.04
	23.3345%
	261
	22.9770%
	200
	22.9627%
	75

	1.04-1.06
	24.3749%
	258
	23.1121%
	204
	22.8800%
	58

	1.06-1.08
	25.5569%
	225
	22.8851%
	188
	22.7296%
	75

	>1.08
	27.7188%
	529
	21.5806%
	713
	21.6021%
	328

	TTL
	
	2634
	
	3085
	
	1485

	Max
	27.7188%
	
	23.2591%
	
	22.9627%
	

	Min
	21.2072%
	
	21.5806%
	
	21.6021%
	

	Range
	6.5116%
	
	1.6785%
	
	1.3606%
	


Table 2 Implied volatility

	
	
	All-Options-Based
	Maturity-Based
	Moneyness-Based

	 
	 
	Days-to-Expiration
	Days-to-Expiration
	Days-to-Expiration

	Moneyness
	Model
	
	
	
	
	
	
	
	
	

	S/K
	 
	<60
	60-180
	≥180
	<60
	60-180
	≥180
	<60
	60-180
	≥180

	Panel A: Absolute Pricing Errors

	<0.94
	CEV
	0.33
	0.37
	0.60
	0.38
	0.40
	0.49
	0.30
	0.34
	0.50

	
	BS
	0.78
	1.39
	1.89
	1.02
	1.48
	1.78
	0.41
	0.63
	0.78

	
	SV
	0.42
	0.43
	0.61
	0.38
	0.42
	0.58
	0.32
	0.36
	0.53

	
	SVSI
	0.37
	0.39
	0.57
	0.38
	0.40
	0.52
	0.30
	0.36
	0.53

	 
	SVJ
	0.37
	0.40
	0.59
	0.27
	0.40
	0.58
	0.33
	0.36
	0.54

	0.94-0.97
	CEV
	0.43
	0.41
	0.50
	0.39
	0.43
	0.44
	0.41
	0.39
	0.54

	
	BS
	0.76
	1.02
	1.16
	0.73
	1.07
	1.15
	0.45
	0.53
	0.69

	
	SV
	0.46
	0.41
	0.54
	0.33
	0.41
	0.54
	0.34
	0.38
	0.53

	
	SVSI
	0.40
	0.40
	0.55
	0.34
	0.41
	0.52
	0.34
	0.38
	0.52

	 
	SVJ
	0.38
	0.38
	0.53
	0.25
	0.39
	0.53
	0.33
	0.38
	0.51

	0.97-1.00
	CEV
	0.45
	0.44
	0.60
	0.38
	0.41
	0.49
	0.44
	0.43
	0.65

	
	BS
	0.61
	0.62
	0.66
	0.51
	0.64
	0.66
	0.70
	0.74
	0.94

	
	SV
	0.48
	0.41
	0.53
	0.39
	0.41
	0.52
	0.40
	0.43
	0.60

	
	SVSI
	0.47
	0.41
	0.54
	0.39
	0.42
	0.51
	0.39
	0.42
	0.60

	 
	SVJ
	0.42
	0.40
	0.52
	0.31
	0.40
	0.51
	0.36
	0.41
	0.63

	1.00-1.03
	CEV
	0.49
	0.57
	0.60
	0.40
	0.44
	0.58
	0.44
	0.45
	0.68

	
	BS
	0.52
	0.69
	0.81
	0.45
	0.65
	0.84
	0.47
	0.50
	0.69

	
	SV
	0.41
	0.43
	0.53
	0.40
	0.41
	0.51
	0.38
	0.43
	0.54

	
	SVSI
	0.43
	0.42
	0.53
	0.41
	0.41
	0.49
	0.38
	0.42
	0.52

	 
	SVJ
	0.40
	0.42
	0.51
	0.37
	0.41
	0.50
	0.37
	0.41
	0.51

	1.03-1.06
	CEV
	0.63
	0.68
	0.61
	0.55
	0.51
	0.54
	0.47
	0.51
	0.69

	
	BS
	0.76
	1.21
	1.30
	0.77
	1.14
	1.37
	0.51
	0.85
	1.76

	
	SV
	0.45
	0.47
	0.55
	0.41
	0.41
	0.51
	0.48
	0.48
	0.67

	
	SVSI
	0.42
	0.45
	0.54
	0.41
	0.41
	0.50
	0.48
	0.48
	0.66

	 
	SVJ
	0.39
	0.44
	0.53
	0.39
	0.41
	0.51
	0.39
	0.42
	0.53

	≥1.06
	CEV
	0.64
	0.65
	1.02
	0.57
	0.52
	0.66
	0.55
	0.51
	0.79

	
	BS
	0.82
	1.39
	1.57
	0.79
	1.35
	1.64
	0.56
	0.62
	0.72

	
	SV
	0.54
	0.49
	0.65
	0.47
	0.40
	0.51
	0.44
	0.41
	0.54

	
	SVSI
	0.52
	0.51
	0.51
	0.48
	0.42
	0.47
	0.43
	0.41
	0.52

	 
	SVJ
	0.43
	0.43
	0.56
	0.36
	0.39
	0.50
	0.40
	0.40
	0.54


Table 3 Out-of-Sample Pricing Errors (Absolute Pricing Errors)

	
	
	All-Options-Based
	Maturity-Based
	Moneyness-Based

	 
	 
	Days-to-Expiration
	Days-to-Expiration
	Days-to-Expiration

	Moneyness
	Model
	
	
	
	
	
	
	
	
	

	S/K
	 
	<60
	60-180
	≥180
	<60
	60-180
	≥180
	<60
	60-180
	≥180

	Panel B: Percentage Pricing Errors

	<0.94
	CEV
	-11.40%
	-0.69%
	3.81%
	-3.92%
	1.09%
	0.24%
	-9.34%
	-0.69%
	3.80%

	
	BS
	-68.78%
	-41.87%
	-26.85%
	-82.99%
	-44.08%
	-25.30%
	-29.21%
	-18.59%
	-9.87%

	
	SV
	-26.48%
	-2.78%
	-3.50%
	6.63%
	1.82%
	0.32%
	-15.04%
	-1.21%
	0.71%

	
	SVSI
	-17.22%
	-1.38%
	-1.43%
	5.26%
	1.38%
	-0.41%
	-10.62%
	-0.65%
	-1.71%

	 
	SVJ
	-19.79%
	-1.44%
	2.13%
	2.88%
	0.14%
	-0.43%
	-12.39%
	-1.58%
	0.11%

	0.94-0.97
	CEV
	-8.78%
	0.50%
	1.51%
	-0.72%
	-0.24%
	0.21%
	-2.03%
	4.44%
	5.41%

	
	BS
	-38.23%
	-15.14%
	-7.39%
	-35.52%
	-15.86%
	-7.18%
	-15.38%
	-2.34%
	2.73%

	
	SV
	-17.29%
	-1.80%
	0.28%
	1.85%
	-1.42%
	-0.55%
	-9.26%
	0.13%
	-0.06%

	
	SVSI
	-11.59%
	-0.70%
	0.12%
	2.14%
	-1.08%
	-0.17%
	-8.13%
	0.06%
	0.08%

	 
	SVJ
	-11.99%
	-1.03%
	0.06%
	-0.39%
	-0.81%
	-0.48%
	-6.97%
	7.00%
	-0.04%

	0.97-1.00
	CEV
	-2.70%
	2.54%
	1.34%
	2.29%
	1.63%
	0.79%
	-2.22%
	3.28%
	2.54%

	
	BS
	-13.73%
	-3.11%
	-1.25%
	-11.61%
	-3.60%
	-1.18%
	-17.64%
	-5.62%
	-3.63%

	
	SV
	-9.87%
	-0.47%
	-0.25%
	-5.08%
	-1.04%
	-0.24%
	-6.17%
	0.97%
	0.03%

	
	SVSI
	-8.84%
	-0.57%
	-39.00%
	-5.01%
	-1.10%
	-0.29%
	-5.04%
	0.89%
	-0.02%

	 
	SVJ
	-6.87%
	-0.33%
	-0.32%
	-0.81%
	-0.63%
	-0.17%
	-3.11%
	0.25%
	-0.74%

	1.00-1.03
	CEV
	2.75%
	3.30%
	1.38%
	4.85%
	2.41%
	1.22%
	-0.34%
	0.73%
	-0.81%

	
	BS
	1.09%
	2.61%
	2.00%
	1.58%
	2.28%
	2.41%
	-0.55%
	0.91%
	0.12%

	
	SV
	-1.16%
	0.54%
	-0.32%
	-1.09%
	-0.30%
	0.16%
	-0.68%
	0.75%
	-0.36%

	
	SVSI
	-1.73%
	0.05%
	-0.50%
	-1.16%
	-0.46%
	-0.09%
	-0.79%
	0.64%
	-0.31%

	 
	SVJ
	-1.11%
	0.31%
	-0.26%
	0.05%
	-0.20%
	0.20%
	-0.35%
	0.47%
	-0.36%

	1.03-1.06
	CEV
	3.40%
	3.10%
	0.91%
	4.34%
	2.34%
	0.69%
	1.03%
	-0.03%
	-1.46%

	
	BS
	3.90%
	4.57%
	3.70%
	4.02%
	4.29%
	4.01%
	-0.51%
	-2.76%
	-5.05%

	
	SV
	1.47%
	0.92%
	-0.32%
	1.05%
	0.09%
	0.25%
	-1.01%
	-0.58%
	0.33%

	
	SVSI
	1.00%
	0.50%
	-0.42%
	1.04%
	-0.01%
	-0.05%
	-1.07%
	-0.62%
	0.44%

	 
	SVJ
	0.69%
	0.55%
	-0.20%
	0.22%
	0.03%
	0.24%
	0.26%
	0.34%
	-0.12%

	≥1.06
	CEV
	1.91%
	1.61%
	-0.75%
	2.12%
	1.22%
	-0.05%
	1.27%
	0.46%
	-1.23%

	
	BS
	2.49%
	3.27%
	2.85%
	2.41%
	3.16%
	3.01%
	1.45%
	0.89%
	-0.30%

	
	SV
	1.46%
	0.79%
	-0.66%
	1.18%
	0.32%
	-0.02%
	0.80%
	0.25%
	-0.23%

	
	SVSI
	1.36%
	0.74%
	-0.28%
	1.21%
	0.40%
	0.03%
	0.72%
	0.22%
	-0.16%

	 
	SVJ
	0.86%
	0.50%
	-0.41%
	0.09%
	0.17%
	-0.04%
	0.65%
	0.36%
	-0.36%


Table 4 Out-of-Sample Pricing Errors (Percentage Pricing Errors)
� A revised version of the paper was published by the Journal of Portfolio Management (1996).


� Bakshi, Cao and Chen (2000) expanded their samples to longer term options using LEAPS. Their empirical results still indicate modeling stochastic volatility is the first-order importance. Once the model has accounted for stochastic volatility, allowing interest rates to be stochastic does not improve pricing performance any further. Only for devising a hedge of LEAPS put does incorporating stochastic interest rates make a difference. However, the hedging performancec interest rates make a difference. terirical results still indicate modeling stochastic volatility is the first-order  is not the interest of this paper. Therefore, we will focus our analysis on pricing performance.


� The path-dependent option pricing studies include Boyle and Tian (1999), Davydov and Linetsky (2001, 2003), Lo, Yuen, and Hui, (2000), Lo, Tang, Ku and Hui (2004), DelBaen and Sirakawa (2002). The credit risk studies include Carr and Linetsky (2006), Campi, Polbennikov, and Sbuelz (2005), Campi and Sbuelz (2005).


� They estimate the parameter� EMBED Equation.3  ���using the point estimating method in MacBeth and Merville (1980). For some interval of time dt, � EMBED Equation.3  ���. And then� EMBED Equation.3  ���is deduced from the BS model by taking an at-the-money option. A difference is that they did not use integer values of� EMBED Equation.3  ���as that of MacBeth and Merville. 


� We thank for Charles Cao to provide their original data of the paper “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, 1997.


� The unrestricted CEV model is mathematically legitimate. However, there are some economic arguments supporting on a restriction on the parameter� EMBED Equation.3  ���. See Jackwerth and Rubinstein (Page 12, 2001).  


� See footnote 5. 
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