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ABSTRACT 
 
This paper compares the forecasting performance of the conditional 
autoregressive range (CARR) model with the commonly adopted GARCH 
model.  We examine two major stock indices, FTSE 100 and Nikkei 225, by 
using the daily range data and the daily close price data over the period 1990 
to 2000.  Our results suggest that improvements of the overall estimation are 
achieved when the CARR models are used.  Moreover, we find that the 
CARR model gives better volatility forecasts than GARCH, as it can catch 
the extra informational contents of the intra-daily price variations.  Finally, 
we also find that the inclusion of the lagged return and the lagged trading 
volume can significantly improve the forecasting ability of the CARR 
models.  Our empirical results further suggest the significant existence of a 
leverage effect in the U.K. and Japanese stock markets.  
 
JEL classification: C10; C50 
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1. INTRODUCTION 

Volatilities play a very important role in finance. Accurate forecasting of 

volatilities is key to risk management and derivatives pricing. The empirical 

finance literature reflects well that concern, nesting many different tools for 

volatility estimation and forecasting purposes. It is well known that many 

financial time series exhibit volatility clustering whereby volatility is likely 

to be high when it has recently been high and volatility is likely to be low 

when it has recently been low. These findings have been uncovered in three 

ways: By estimating parametric time series models like GARCH and 

Stochastic Volatility, from option price implied volatilities, and from direct 

measures, such as the realized volatility. Among them, The GARCH model 

is most-adopted for modeling the time-varying conditional volatility. 

GARCH models the time varying variance as a function of lagged squared 

residuals and lagged conditional variance. The strength of the GARCH 

model lies in its flexible adaptation of the dynamics of volatilities and its 

ease of estimation when compared to the other models.  

Essentially, the GARCH model is return-based model, which is 

constructed with the data of closing prices. Hence, though the GARCH 

model is a useful tool to model changing variance in time series, and 

provides acceptable forecasting performance, it might neglect the important 

intraday information of the price movement. For example, when today’s 

closing price equals to last day’s closing price, the price return will be zero, 

but the price variation during the today might be turbulent. However, the 
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return-based GARCH model cannot catch it.  Using the intra-day GARCH, 

some studies try to remedy the limit of the traditional GARCH. An 

alternative way to model the intra-day price variation is adopting the price 

range data instead.  The price range, the difference between the daily high 

and daily low of log-prices, has been used in the academic literature to 

measure volatility. Financial economists have long known that the daily 

range of the log price series contains extra information about the course of 

volatility over the day. Within a constant volatility framework, Parkinson 

(1980) and Garman and Klass (1980) show that use of the price range can 

approve volatility estimates by as much as a factor of eight over the standard 

estimate. Beckers (1983) and Hsieh (1991) present related results and strong 

empirical documentation on the efficiency improvement.  Grammatikos and 

Saunders (1986) also applies price range as the proxy of price volatility to 

test the maturity effect and volume effect on futures. 

Gallant, Hsu, and Tauchen (1999) and Alizadeh, Brandt, and Diebold 

(2002) incorporate the log-range data into the equilibrium asset price models. 

Their approaches follow the Stochastic Volatility framework, so it can be 

seen as Range-based Stochastic Volatility (RSV) model. Their study 

emphasizes on the model of the log-range rather than the level of range 

using an approximating result that the log-range is approximately normal. 

Sadorsky (2005) tests the forecasting performance of the RSV model with 

financial data of the S&P 500 index, ten-year US government bond series, 
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crude oil prices, and the Canadian/US exchange rate. However, overall the 

forecast summary statistics show that the RSV model works poorly.  

Despite the elegant theory and the support of simulation results, the price 

range as a proxy of volatility has performed poorly in empirical studies. 

Chou (2005) conjectures that the fundamental reason for the poor empirical 

performance of price range is that it cannot well capture the dynamics of 

volatilities. By properly modeling the dynamic process, price range would 

retain its superiority in forecasting volatility. Therefore, Chou (2005) 

proposes an alternative range-based volatility model, the Conditional 

Autoregressive Range model (CARR) to forecast volatilities. The CARR 

model is very different from Alizadeh, Brandt, and Diebold (2002)’s Range-

based Stochastic Volatility model in several aspects. First, The CARR 

model involves the range data instead of the log-range data. Second, the 

CARR model describes the dynamics of the conditional mean of the range, 

while Range-based Stochastic Volatility model describes the dynamics of 

the conditional return volatility. Finally, Range-based Stochastic Volatility 

model focuses on estimation and in-sample fitting, whereas the CARR 

model’s interest lies primarily in model specification and out-of-sample 

forecasting. 

Moreover, relative to the GARCH framework, the CARR model entails 

some advantages. First, the price-range is observable in contrast to the 

volatility. Second, while the CARR model deals exclusively with the 
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variance, the GARCH approach attempts to simultaneously model the first 

and second conditional moments. Third, CARR-based volatility estimates 

are presumably more efficient than GARCH-based estimates since they take 

advantage of a richer information set. Fourth, the CARR model works as a 

good approximation of the standard deviation GARCH process. Finally, the 

CARR model can be easily extended to incorporate exogenous variables to 

fit the real market conditions. 

By applying to the weekly S&P 500 index data, Chou (2005) shows that 

the CARR model does provide sharper volatility estimates compared with a 

standard GARCH model. Application of CARR to other frequency of range 

intervals, say every day, will provide further understanding of the usefulness 

and limitation of the range model. Analyzes using more stock index data 

will also be helpful. In order to induce a more general conclusion of 

CARR’s superiority in forecasting the volatilities of stock markets, in this 

paper the CARR model is applied to the daily datasets of two major stock 

indices: the FTSE 100 and the Nikkei 225. Several performance 

measurements are employed to compare the results.  

Several stylized features of stock markets, such as the “leverage effect” in 

the volatility-return relation and the positive volatility-volume relation have 

recently become the focus of detailed empirical study. Therefore, in this 

paper we indicate a way of extending the CARR model to reflect these 

features. We examine whether the inclusion of lagged return and the lagged 
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trading volume can significantly improve the forecasting ability of the 

CARR model. Firstly, by incorporating the lagged return, we can catch the 

“leverage effect” in the stock markets. The leverage effect or volatility 

asymmetry is negative return sequences are associated with increases in the 

volatility of stock returns. The leverage effect was studied in some early 

work by Black (1976), while it motivated the introduction of the EGARCH 

model of Nelson (1990) and the threshold ARCH model of Glosten, 

Jagannathan, and Runkle (1993). An economic theory behind such effects is 

discussed by Campbell and Kyle (1993). Secondly, by incorporating the 

lagged trading volume into the CARR model, we re-examine the 

relationship between volatility and trading volume in the stock markets. 

Karpoff (1987) provides a detailed survey and concludes that volume is 

positively related to the volatility in equity markets.  

 The structure of this paper is as follows. Section 2 describes the data. 

Section 3 presents the specification of the CARR model. Section 4 discusses 

the empirical results. Section 5 concludes this paper. 

 

2. DATA  

 

We analyze the daily data on the FTSE 100 (London) and Nikkei 225 

(Tokyo). It covers eleven years period, from January 1990 to December 

2000. The estimation process is run using eight years of data (1990-2000) 

while the remaining 3 years are used for forecasting. The data are available 



 6

from CRSP. The daily closing prices are transformed into continuously 

compounded rates of returns as followed. 

[ ]1100 ln( / )t t tr P P−= ,               (1) 

where tP  is the closing stock index on day t and the sample size runs from 1 

to T. These returns will be used to construct a GARCH model for the 

comparison purpose. The range of the log-prices is defined as the difference 

between the daily log high stock index and the daily log low stock index. 

100(ln ln )H L
t t tR P P= − ,             (2) 

where H
tP  and H

tP respectively are the highest and lowest stock index on 

day t.  

 

Figure 1 and Figure 2 present the plot of daily return and intraday price 

range of FTSE 100 and Nikkei 225, respectively.  Table 1 reports the 

descriptive statistics summary for the daily returns and the price-ranges of 

the FTSE 100 and Nikkei 225. As is typical with financial time series, both 

daily returns and daily ranges exhibit excess kurtosis. As a consequence, the 

Jarque-Bera test results in a rejection of normality at the 1% significance 

level for both indices. Besides, compared with the return, the price range 

catches higher variation of intraday price movement on average; but the 

standard deviation of the price range is approximately only one-fourth the 

standard deviation of the return. Hence, the superior efficiency of the price 

range measure, relative to the return, emerges clearly. 
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Augmented Dickey and Fuller (1979) (ADF) and Phillips and Perron 

(1988) (PP) unit root tests for non-stationarity in the price-range data of 

FTSE 100 and Nikkei 225 both indicate no evidence of non-stationarity. 

Each of the unit-root test statistics is calculated with an intercept in the test 

regression. For each of these tests, the null hypothesis is a non-stationary 

time series and the alternative hypothesis is a stationary time series. The lag 

length for the ADF test regression is set using the Schwarz information 

criteria, and the bandwidth for the PP test regression is set using a Bartlett 

kernel. The first ten autocorrelations for the range of financial series are 

reported in Table 2. As a basis of comparison, recall that the 

autocorrelations for a randomly distributed variable should be less than two 

standard errors. The large and slowly decaying autocorrelations of the range 

of both series show strong volatility persistence.  

 

3. THE CARR MODEL 

 

This section provides a brief overview of the Conditional Autoregressive 

Range (CARR) model used to forecast range-based volatility. With the time 

series data of daily price range tR , Chou (2005) presents the CARR model 

of order (p,q), or CARR (p,q) is shown as 

tttR ελ=                (3) 

∑∑
=

−−
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++=
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i
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p

i
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(.)~ ftε , 

where tλ is the conditional mean of the range based on all information up to 

time t, and the distribution of the disturbance term tε , or the normalized 

range, is assumed to have a density function (.)f  with a unit mean. Since 

tε  is positively valued given that both the price range tR  and its expected 

value tλ  are positively valued, a natural choice for the distribution is the 

exponential distribution. Assuming that the distribution follows an 

exponential distribution with unit mean, Chou (2005) shows that the log 

likelihood function can be written as 

∑
=

+−=
T

t t

t
tTii

R
RRRL

1
21 ])[ln(),...,,;,(

λ
λβα .              (4) 

 

Chou (2005) also shows that the unconditional long-term mean of range 

ω  can be calculated as 

    ∑∑
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q
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i

p

i
i
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)](1/[ βαωω                          (5) 

and for the model to be stationary and to ensure the nonnegative range, the 

coefficients ω , iα  and iβ  must meet the following conditions: 

∑∑
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11
1βα  and 0,, >ii βαω .             (6) 

 

One of the important properties for the CARR model is the ease of 

estimation. Specifically, the Quasi-Maximum Likelihood Estimation 
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(QMLE) of the parameters in the CARR model can be obtained by 

estimating a GARCH model with a particular specification: specifying a 

GARCH model for the square root of range without a constant term in the 

conditional mean equation. The intuition behind this property is that with 

some simple adjustments on the specification of the conditional mean, the 

likelihood function in the CARR model with an exponential density function 

is identical to the GARCH model with a normal density function. 

Furthermore, all asymptotic properties of the GARCH model are applicable 

to the CARR model. Given that the CARR model is a model for the 

conditional mean; its regularity conditions are less stringent than the 

GARCH model. The details of this and other related issues are beyond the 

scope of this article, and the interested readers can be referred to Chou 

(2005). 

 

4. EMPIRICAL RESULTS 

 

4.1. Forecasting evaluation 

 

In order to access the out-of-sample forecasting abilities of two different 

models, we firstly calculate the root mean squared error (RMSE) and the 

mean absolute error (MAE) as measures of forecasting errors for each of the 

models. RMSE and MAE are defined as follows: 

∑
=

++
− −=

T

t
htht FVMVTRMSE

1

21 )( ,             (7) 
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=
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− −=
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t
htht FVMVTMAE

1

1 ,             (8) 

where htMV +  denotes the measured or realized volatility, htFV +  denotes the 

forecasted volatility, T  denotes the sample size of forecasts and h  denotes 

the forecast horizon. To calculate the measured or realized volatility htMV + , 

we adopt three measures: the daily range (DRNG), the absolute daily return 

(ADRET) and the squared daily return (SDRET).  

To calculate the forecasted volatility htFV + , we use a forecasting 

procedure described as follows: We select 1 day, 2 days, 3 days, 5 days and 

20 days as our forecast horizon h . To forecast the volatilities for a specific 

forecast interval, we use 1,500 daily observations prior to that interval as our 

initial sample to estimate the parameters of the model. The estimation period 

is then rolled forward by adding one new day and dropping the most distant 

day. In this way the sample size used in estimating the models stays at a 

fixed length and the forecasts do not overlap. A total of 1000 forecasts is 

made for each forecast horizon h , i.e., 1000=T .  

Secondly, we also follow the modified DM test (MDM) proposed by 

Harvey et al. (1997) to access and compare the out-of-sample forecasting 

abilities of two different models. The MDM test is modified from the DM 

test of Diebold and Mariano (1995), and it performs much better than the 

DM test across all forecast horizons and in situations where the forecast 

errors are autocorrelated or non-normal distributed. The null hypothesis of 
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equal forecast accuracy is tested based on E(dt) = 0 where E is the 

expectation operator and 1 2t t td e e= − is the loss differential. The variables 

1te and 2te  are forecast errors from CARR and GARCH respectively. The 

forecast error is difference between the actual and predicted values of 

volatility in time t: t t te MV FV= − . 

The MDM test for h-step ahead forecasts is distributed as a t-distribution 

with n-1 degrees of freedom. The MDM test statistic is 

1/ 21
1/ 21 2 ( 1) ( ( ))n h n h hMDM d V d

n

−
−⎛ ⎞+ − + −

= ⎜ ⎟
⎝ ⎠

,            (9) 

where 

1

1

h

t
t

d n d−

=

= ∑  and 
1

1
0
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( ) ( 2 )

h

k
k

V d n γ γ
−

−

=

= + ∑ .          (10) 

The variable n is the number of forecasts computed from CARR and 

GARCH. The variable kγ is the kth autocovariance of dt. 

Finally, to determine the relative information content of the two volatility 

forecasts, we follow the approach of Mincer and Zarnowitz (1969) running a 

forecast encompassing regression: 

 ( )  ( )t h t h t h t hMV a b FV CARR c FV GARCH u+ + + += + + + .     (11) 
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The 2R  statistic from this regression therefore provides the proportion of 

variances explained by the forecast (i.e., the higher the 2R , the better the 

forecasts). A good forecasting model should have no intercept (unbiased) 

and a slope of 1. The heteroskedasticity autocorrelation-consistent standard 

errors are computed using the Newey-West (1987) procedure. 

4.2. Model parameter estimation and out-of-sample forecasting results 

To estimate and forecast the volatility of these indices, we first compare 

various CARR model specifications to determine the best form of the model 

for the price-range data of FTSE 100 and Nikkei 225. Specifically, we 

consider three forms of the CARR model: CARR (1,1), CARR (1,2) and 

CARR (2,1). The estimation results are reported in Table 3.  Using the case 

of FTSE 100 as an example, the p-value indicates that both the 2α  

coefficient in the CARR (2,1) model and the 2β  coefficient in the CARR 

(1,2) model are not significant at the 5% level. The value of the log 

likelihood function (LLF) further indicates that the CARR (1,1) model 

outperforms both the CARR (1,2) model and the CARR (2,1) model and the 

CARR (1,1) model is sufficient for both financial time series. This results 

consist with Chou (2005), which also finds that the CARR (1,1) model 

appears to work quite well in practice as a general-purpose model. On the 

other hand, among GARCH model specifications GARCH (1,1) is the best 

form of the model for the return data of FTSE 100 and the Nikkei 225. The 

range-based volatility models clearly outperform the return-based models, 
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since the LLF strongly increases to 2.44 and 2.98 with CARR (1,1) versus 

2.38 and 2.84 with GARCH (1,1), for the FTSE 100 and the Nikkei 225 

respectively.  

 

Based on the appropriate model specification for CARR and GARCH, we 

then perform out-of-sample forecasts to assess the forecasting ability of 

these two volatility models. The forecasting results are reported in Table 4. 

No matter for FTSE 100 and Nikkei 225, both the RMSE and MAE 

measures indicate that the forecasting error of the CARR (1,1) model is 

lower than that of the GARCH (1,1). This means that CARR (1,1) model 

outperforms the GARCH (1,1) model. In other words, both measures 

provide support for Chou (2005)’s proposition that the range contain more 

information than the return and, as a result, the CARR (1,1) model can 

provide sharper volatility forecasts than the standard GARCH (1,1) model. 

Upon closer examination of the numbers across the forecast horizon h , we 

also find that as the forecast horizon h  increases, the forecasting ability of 

the model deteriorates. This finding is consistent with West and Cho (1995) 

and Christoffersen and Diebold (2000). According to the MDM test in Table 

4, for the time series of FTSE 100 and Nikkei 225, the CARR (1,1) model 

outperforms the GARCH (1,1) model. This is encouraging because it means 

that the benchmark GARCH (1,1) is consistently beaten by the CARR (1,1) 

model.  The results of the Mincer-Zarnowitz regression test are also reported 

in Table 4, and they are consistent with the methods using RMSE, MAE and 
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MDM. The dominance of CARR over the GARCH model is clear. Once the 

CARR-predicted-volatility is included, the GARCH-predicted-volatility 

often becomes insignificant or has wrong signs.  

 

4.3. The CARRX model 

 

The CARR model of order (p,q), or CARR (p,q), can be easily extended to 

incorporate exogenous variables itX −  by modifying the conditional mean of 

the range tλ : 

∑∑∑
=

−
=

−−
=

+++=
l

i
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q

i
itiit

p

i
it XR

111
γλβαωλ .          (12) 

This model is denoted by CARRX (p,q). In this article, we add two 

exogenous variables, the lagged return and trading volume, into the CARR 

model to catch the stylized futures of stock markets, and also to investigate 

whether the forecasting ability of the CARR model can be significantly 

improved.   

By incorporating exogenous variables, the lagged return and trading 

volume, we consider two forms of the CARRX(1,1) model: CARRX(1,1)-a 

and CARRX(1,1)-b. The CARRX(1,1)-a model incorporates only the lagged 

return 1tY − , and the CARRX(1,1)-b model incorporates only the trading 

volume 1tV − .  The estimation results are reported in Table 5.  The p-value 

indicates that the 1γ  coefficient for the lagged return 1tY −  and the 2γ  
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coefficient for the lagged trading volume 1tV −  are both significant at the 5% 

level.  The 1γ  coefficient suggests a negative relation between lagged return 

1tY − and volatility: as lagged return 1tY − decreases, volatility would increase.  

The 2γ  coefficient suggests a positive relation between the lagged trading 

volume 1tV −  and volatility: As the lagged trading volume 1tV −  decreases, 

price volatility would also decrease. The 1γ  coefficient suggests the 

existence of a leverage effect, such that bad news would have a greater 

impact on future volatility than good news. Meanwhile, the 2γ  coefficient 

also suggests the positive volatility-volume relation, which means price 

volatility steadily declines with less trading volume. 

Note the reduction of the Ljung-Box Q statistics of the CARRX (1,1) 

model when compared to the original CARR (1,1) model. The reduction of 

the Ljung-Box Q statistics indicates that the CARRX (1,1) model has better 

forecasting ability than the CARR (1,1) model. The increasing value of the 

log likelihood function also further indicates such. 

 

5. CONCLUSIONS 

 

This paper examines the empirical performance of the CARR model by 

analyzing daily data on the FTSE 100 and Nikkei 225 over the period 1990 

to 2000. We find that the CARR model produces sharper volatility forecasts 

than the commonly adopted GARCH model. Furthermore, we find that the 
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inclusion of the lagged return and trading volume can significantly improve 

the forecasting ability of the CARR model. Our empirical results also 

suggest the existence of a leverage effect in the U.K. and Japanese stock 

markets.  

 

The CARR model provides a simple, yet effective framework for 

forecasting the volatility dynamics. It would be interesting to explore 

whether alternative choices of the range, such as the monthly and quarterly 

range, fit the class of the CARR models. Generally, the empirical results of 

this article provide strong support for the application of the CARR model in 

the stock markets that will be of great interest to academics and practitioners, 

particularly those involved in making international risk management 

decisions. 
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Figure 1. Plot of daily return and intraday price range of FTSE 100 
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Figure 2. Plot of daily return and intraday price range of Nikkei 225 
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Table 1. Descriptive statistics summary for daily price range and return 
 FTSE 100 Nikkei 225 
 Daily 

Range 
Daily 
Return 

Daily 
Range 

Daily 
Return 

Mean 1.112 -0.012 1.252 0.015 
Median 1.068 -0.042 1.215 0.016 
Maximum 3.152 5.589 2.988 7.234 
Minimum 0.390 -5.904 0.539 -7.655 
Std. Dev. 0.337 1.109 0.308 1.461 
Skewness 0.940 0.135 0.933 -0.042 
Kurtosis 4.639 5.474 4.800 5.069 
Jarque-Bera  
 

720.090 
(0.000) 

716.320 
(0.000) 

758.970 
(0.000) 

483.690 
(0.000) 

Observations 2,778 2,777 2,709 2,708 
Unit root tests     

ADF (0.000) (0.000) (0.000) (0.000) 
PP (0.000) (0.000) (0.000) (0.000) 

Note: ADF is the Augmented Dickey and Fuller (1979) unit root test. PP is 
the Phillips and Perron (1988) unit root test. The numbers in parentheses are 
p-values. 
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Table 2. Autocorrelations of daily price range and return 
 FTSE 100 Nikkei 225 

Lags Daily Range Daily Return Daily Range Daily Return 
1 0.631 0.005 0.392 -0.039 
2 0.623 -0.036 0.373 -0.049 
3 0.608 -0.097 0.386 0.033 
4 0.589 0.029 0.337 -0.035 
5 0.592 -0.034 0.316 -0.008 
6 0.585 -0.047 0.314 -0.019 
7 0.564 -0.017 0.329 -0.001 
8 0.581 0.053 0.296 -0.003 
9 0.554 0.033 0.300 -0.007 
10 0.559 -0.047 0.285 0.017 

Note: Lags refers to the number of days lagged.



 21

Table 3. The CARR and GARCH model parameter estimation 
 FTSE 100                                                                                        Nikkei 225 

 CARR(1,1) CARR(1,2) CARR(2,1) GARCH(1,1) CARR(1,1) CARR(1,2) CARR(2,1) GARCH(1,1)
LLF -4226.606 -4226.489 -4226.531 -3822.699 -4485.222 -4485.257 -4485.229 -4724.940 
ω  0.011 

（0.000） 
0.017 

（0.000） 
0.014 

（0.000） 
0.011 

（0.000） 
0.044 

（0.000） 
0.047 

（0.000） 
0.047 

（0.000） 
0.045 

（0.000） 

1α  0.130 
（0.000） 

0.186 
（0.000） 

0.145 
（0.000） 

0.077 
（0.000） 

0.156 
（0.000） 

0.177 
（0.000） 

0.158 
（0.000） 

0.073 
（0.000） 

2α    0.019 
（0.416） 

   0.005 
（0.829） 

 

1β  0.861 
（0.000） 

0.590 
（0.000） 

0.825 
（0.000） 

0.913 
（0.000） 

0.817 
（0.000） 

0.553 
（0.000） 

0.808 
（0.000） 

0.907 
（0.000） 

2β   0.209 
（0.059）    0.240 

（0.035） 
  

Q(12) 25.632 20.877 20.751 26.529 10.500 11.310 10.640 11.123 
 （0.012） （0.052） （0.054） （0.009） （0.572） （0.503） （0.560） （0.518） 

Note: LLF is the log likelihood function. ω , 1α , 2α , 1β  and 2β  are the 
model coefficients. Q(12) is the Ljung-Box Q statistic. The numbers in 
parentheses are p-values. 
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Table 4. Forecasting results for the CARR model and the GARCH 
model 

  FTSE 100  
RMSE DRNG ADRET SDRET 

h CARR  GARCH CARR GARCH CARR GARCH  
1 0.006 0.016 0.762 0.779 6.772 6.793  

2 0.008 0.017 0.787 0.811 6.794 6.801  

3 0.017 0.023 0.791 0.855 6.886 7.102  

5 0.031 0.056 0.791 0.861 7.115 7.358  

20 0.054 0.068 0.834 0.901 7.429 7.659  

MAE DRNG ADRET SDRET 
h CARR  GARCH CARR GARCH CARR GARCH 
1 0.005 0.007 0.760 0.779 6.715 6.815 
2 0.006 0.022 0.763 0.787 6.761 6.832 
3 0.014 0.027 0.763 0.806 6.784 6.924 
5 0.023 0.029 0.784 0.812 7.026 7.166 
20 0.042 0.058 0.786 0.835 7.266 7.321 
  Nikkei 225  

RMSE DRNG ADRET SDRET 
h CARR  GARCH CARR GARCH CARR GARCH 
1 0.006 0.016 0.762 0.779 6.772 6.793 
2 0.008 0.017 0.787 0.811 6.794 6.801 
3 0.017 0.023 0.791 0.855 6.886 7.102 
5 0.031 0.056 0.791 0.861 7.115 7.358 
20 0.054 0.068 0.834 0.901 7.429 7.659 

MAE DRNG ADRET SDRET 
h CARR  GARCH CARR GARCH CARR GARCH 
1 0.005 0.007 0.760 0.779 6.715 6.815 
2 0.006 0.022 0.763 0.787 6.761 6.832 
3 0.014 0.027 0.763 0.806 6.784 6.924 
5 0.023 0.029 0.784 0.812 7.026 7.166 
20 0.042 0.058 0.786 0.835 7.266 7.321 

Note: RMSE refers to the root mean squared error. MAE refers to the mean 
absolute error. DRNG is the daily range. ADRET is the absolute daily 
return. SDRET is the squared daily return. h refers to the forecast horizon. 
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Table 4. (Continued) 
 FTSE 100 Nikkei 225 

DM (0.000) (0.000) 
MDM (0.000) (0.000) 
Mincer-Zarnowitz regression test   

a 0.029  
(0.034)       

0.014 
(0.041)       

b 1.024  
(0.000) 

0.750 
(0.000)   

c -0.047  
(0.067) 

-0.286 
(0.053) 

R2 0.525 0.448 
Note: DM refers to the test statistic of Diebold and Mariano (1995). MDM 
refers to the modified test statistic of Diebold and Mariano (1995) proposed 
by Harvey et al. (1997). a, b and c are the model coefficients. R2 is the 
coefficient of determination of the model. The numbers in parentheses are p-
values.
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Table 5. The CARRX model parameter estimation 
 FTSE 100 Nikkei 225 
 CARRX 

(1,1)-a 
CARRX 
(1,1)-b 

CARRX 
(1,1)-a 

CARRX 
(1,1)-b 

LLF -4226.680 -4226.570 -4485.280 -4485.223 
ω  0.016 

(0.000) 
0.063 

(0.027) 
0.029 

(0.000) 
0.034 

(0.014) 

1α  0.112 
(0.000) 

0.183 
(0.000) 

0.118 
(0.000) 

0.124 
(0.000) 

1β  0.875 
(0.000) 

0.796 
(0.000) 

0.863 
(0.000) 

0.825 
(0.000) 

1γ  -5.452 
(0.000) 

 -3.501 
(0.000) 

 

2γ   0.002 
(0.028)  0.003 

(0.011) 
Q(12) 10.500 

（0.045） 
15.444 
(0.003) 

18.477 
(0.000) 

18.555 
(0.000) 

Note: LLF is the log likelihood function. ω , 1α , 1β , 1γ  and 2γ  are the 
model coefficients. Q(12) is the Ljung-Box Q statistic. The numbers in 
parentheses are p-values. 
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