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In this paper we extend the Jarrow and Deventer (1998) model to allow for 
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discrete-time framework as well. We also use the market segmentation argument to 

describe the characteristics of the credit card industry. From our simulation results, we 

find that the shapes of forward-rate term structure and the forward spread (default risk 

premium) play most important roles in determining the value of credit-card loans and 

credit-card asset-backed securities. 
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1. Introduction 
 

The average annual growth rate of consumer credit (93% of which is in the form of 

credit card receivables) was over 12% between 1980 and 2002 according to the 2003 

Federal Reserve statistics reports. Before 1987, growth rate is on average upwards of 

15%. After 1987, securitization became integral to credit card industry growth. 

Citicorp led the sector through the capital crunch of the early 1990s, increasing its 

credit card accounts 42% between 1990 and 1992, and stimulated growth to 18% in 

1994 and 22% in 1995. By 1996, securitized credit card receivables exceeded $180 

billion, at which time credit card comprised 48.4% of the non-mortage ABS market. 

By 2001, credit card securitization had grown to $339.1 billion (see Calomris and 

Mason (2004)). 

 

As mentioned earlier, the market of credit card loans grows fast. However, it is 

difficult to value credit card loans since they pay/charge rates which differ from 

market rates on equivalent-risk financial securities. This major difference has been 

attributed to markets with imperfect competition, probably due to either market 

frictions, regulatory barrier, or adverse selection problems under asymmetric 

information (see for example, Hutchison and Pennacch’s (1996)). Another important 

feature of credit card loan is that these loans have high default risks. Observing from 

the market, the default rates for credit card loan are on average much higher than 

other loans. Hence it is important to capture the characteristics of credit card loans, 

including interest rate differential and default risks when one constructs a model to 

value these products. 

 

Apart from Jarrow and Deventer (1998) model, the existing literature regarding 

pricing credit card loan and credit card backed securities is rare. In this paper we use 

the arbitrage-free price method to construct a discrete-time model and a continuous 

model which can capture the characteristics of interest rate differential and default 

risks for pricing risky credit card loan assets, respectively. To do so, we first modify 

the Jarrow and Deventoer’s model by extending the Heath-Jarrow-Morton (1990) 

term-structure model to allow for considering default risks. Further, we use the market 

segmentation argument to describe the characteristics of interest rate differential 

observed in the credit card industry. 

Our model has three features. First, it takes existing spreads as an input into the 
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model rather than deriving the model from implications on default probabilities and 

recovery rate. Second, rather than work with spot yield curves for default-free and 

risky debt, we work with “forward rates” and “forward spreads”. The advantages of 

using forward rates are that the current term structure is an input to the model and the 

forward rates can describe short rates while the short rates cannot describe forward 

rates. Third, in one hand, we provide a closed-form solution for valuing credit card 

loans and its securitization products in a continuous-time framework. In the other 

hand, we offer an applicable lattice approach to value the credit card loan related 

products in a discrete-time framework. 

 

From our simulation results, we find that the shapes of forward-rate term 

structure and the forward spread (default risk premium) play most important roles in 

determining the value of credit-card loans and credit-card asset-backed securities. To 

our best knowledge, our model is the first one to investigate how .the parameters of 

default risks affect the value of credit card loans and credit card asset backed 

securities. 

 

This paper is composed of the following sections. Apart from introduction, section 

2 briefly reviews the literature for pricing credit card loan and credit card loan ABS. 

Section 3 constructs a discrete-time model for pricing credit card loan assets with 

default risks. Section 4 derives a closed-form solution for valuing credit card loan 

related securities in a continuous-time framework. Section 5 sets up an applicable 

lattice approach to value the credit card loan related products in a discrete-time 

framework. Section 6 uses numerical examples to investigate how the key parameters 

in our model affect the values of credit card loans.. Finally we draw conclusions in 

section 7. 

 

2 Literature Review 

 

2.1 The pricing models for credit card loans 

 

The existing literature on valuing credit card loans includes Ausubel (1991), 

O’Brien et al. (1994), the Office of Thrift Supervision (1994), Hutchison and 

Pennacchi (1996), and Jarrow and Deventer (1998). Ausubel (1991) and the Office of 



 4

Thrift Supervision (1994) compute present values by using a model with deterministic 

credit card loan growth, rates paid, and interest rates. This way trivializes the problem, 

because the interest rate risk and stochastic growth are the major confounding factors 

in determining present values. The Office of Thrift Supervision (1994) measures the 

interest rate risk of credit card loan balances by computing their “duration”. Mixing 

deterministic and stochastic interest rate analysis in this manner only generates 

nonsensical results.   

 

O’Brien et al. (1994) compute present values and interest rate sensitivities in two 

ways. One is done by the Office of Thrift Supervision, and the other is done by the 

discounted expected value using stochastic credit card loan balances, credit card loan 

rates, and interest rates. In the latter case, the expectation represents a present value 

only if investors are risk-neutral. Expectations are computed using a Monte Carlo 

simulation under this risk-neutrality assumption. Hutchison and Pennacchi (1996) 

calculate present values using an equilibrium-based model in an economy where 

interest rates follow a square root, mean-reverting process. Jarrow and Deventer (1998) 

provide an arbitrage-free procedure for computing present values in a stochastic 

interest rate environment using the Heath et al. (1992) methodology. 

 

 

2.2 The Pricing Models for Credit Card ABS 

 

The existing literature regarding credit card ABS focuses on the topic of 

introducing this merchandise and the structure of securitization, and the pricing model 

is rare comparably. Rosenthal (1988) discusses the key points of issuing credit card 

ABS with a real example. The repayment method of credit card ABS differs from 

others.  Most studies in the literature discuss Bullet Amortization and Controlled 

Amortization, and Bhattacharya (1996) introduces the Pass Through method. Fabozzi 

(1997) offers the default model of credit card loans and extends it to the rating of 

credit card ABS. Morris (1990) provides the whole concept of the process of issuing 

credit card ABS. Dean (1999) finds that credit card receivables have some 

characteristics which affect the structure of ABS, such as the average refund period is 

shorter than others, they are not assured, and the default rate is high.  He also 

discusses the differences and the advantages of Stand-Alone Trust and Master Trust. 
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3. THE MODEL 
 
3.1 The framework of our model 
 

In this paper we construct a framework for pricing credit card loans with default 

risks. Utilizing the risk-neutral pricing methodology, we develop an arbitrage-free 

model for valuing credit card loans. Credit card loans are difficult to value because the 

charge rate differs from the market rates on financial securities of equal risk. In order 

to describe this characteristic well, we use the market segmentation argument.   

There are numerous providers of credit cards and no major barriers to entry.  Such a 

market structure leads to competitive performance, whereby prices adjust with costs 

and issuers earn a normal rate of profit. However, we can find that the credit card 

interest rate rather than other rate is inactive and the largest issuers fix their rates at 

18-20 percent. According to the paper by Paul S. and Loretta J. (1995), there is  

imperfect competition in the credit card industry due to search costs, switch costs, and 

adverse selection.  

 

The market segmentation hypothesis is that there are two types of traders, banks or 

financial institutions and individuals. The partition between these two types is based 

on their ability to issue credit cards. We assume that there are significant regulatory 

restrictions and entry or mobility barriers associated with credit card loans. Only 

banks or financial institutions, and not individual investors, can issue credit cards.   

 

3.2 Valuation of credit card loans with default risks 

 

Consider an economy on a finite time interval *[0, ]T . Periods are taken to be of 

length h  > 0. Thus, a typical time-point t  has the form *k h for some integer k .  

At time t , *t k h= .  It is assumed that at all time t , a full range of default-free 

zero-coupon bonds is trades, as does a full range of risky zero-coupon bonds. It is also 

assumed that the markets are free of arbitrage, and so there exists an equivalent 

martingale measure Q. 

 

For any given pair of time points ( , )t T  with *0 t T T h≤ ≤ ≤ − , let ( )L t  denotes 

the volume of credit card loans to a particular bank at time t , and ( )c t  denotes the 
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credit card loans’ interest rate at time t .  

 

The cash flow of credit card loans is as follows： 

 

Table 1:  The cash-flow of credit card loans 

 

t  t h+  2t h+  --- T h−  T  

( )L t−  ( )*exp{ ( )}L t c t+ ( )*exp{ ( )}L t h c t h+ + + --- ( 2 )*exp{ ( 2 )}L T h c T h+ − −  ( )*exp{ ( )}L T h c T h+ − −

 ( )L t h− +  ( 2 )L t h− +  --- ( )L T h− −   

 
The cash flow of credit card loans shows no risks, but actually there are default 

risks.  Under the risk-neutral measure, the expected risky cash flow discounted at 

riskless rates must be equal to the value of expected riskless cash flow discounted at 

risky discount rates. Hence, we use the risky discount rate to calculate the net present 

value of ( )L t , and let ( )LV t denote the net present value of ( )L t at time t  to the 

bank. 

 

For any given pair of time points ( , )t T , let ),( Ttf  denote the forward rate on the 

default-free bonds applicable to the period ( , )T T h+ and )(tr  denotes the short rate, 

and ),()( ttftr = . That is to say, ),( Ttf  is the rate as viewed from time t for a 

default-free lending or investment transaction over the interval of ( , )T T h+ . The 

forward rate curve is assumed to evolve according to the process： 

 

1( , ) ( , ) ( , ) ( , )ff t h T f t T t T h t T X hα σ+ = + +                (1) 

 

where ( , )t Tα  and ( , )f t Tσ  are the drift term and the volatility of the forward rate, 

respectively； 1X  is a random variable. 

Let ( , )t Tϕ  be the forward rate on the risky bonds implied from the spot yield 

curve, and ),( Tts  is the forward spread on the risky bonds and is defined as： 

 

( , ) ( , ) ( , )s t T t T f t Tϕ= −                         (2) 

 

Assume that the forward spread follows the process given in equation (3). 
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2( , ) ( , ) ( , ) ( , )spreads t h T s t T t T h t T X hβ σ+ = + +               (3) 

 

where ( , )t Tβ  and ( , )spread t Tσ  are the drift  term and  volatility of the forward 

spread, respectively； 2X  is a random variable. 

 

Under the risk-neutral measure, the present value of expected riskless cash flow 

must be discounted at risky discount rates. The cash flow includes default risks. Using 

( , )t Tϕ  as the discount rate, we can get the net present value of credit card loans at 

time t , ( )LV t , by equation (2). 

 

The net present value of credit card loans at time t , ( )LV t , to the financial 

institution is as follows (the derivation of equation (4) can refer to Appendix A )： 

 
/ 1

/

( )*exp{ ( )* } ( ) ( )* ( )( ) [ ( ) ( )* ]
( ) ( )

T h

L t
k t h

L kh c kh h L kh h J t L TV t E L t J t
J kh h J T

−

=

− +
= − + +

+∑    (4) 

 

Where ( )J t denotes the time t  value of an account that uses an initial investment 

$1 ( (0) 1J = ), and rolls the proceeds over at the rate ϕ . That is to say, 

 

}*),(exp{)(
1/

0
∑

−

=

=
ht

k
hkhkhtJ ϕ                       (5) 

The value of credit card loan assets to the financial institution at time t  is denoted 

by ( )LC t , and this equals the initial credit card loans plus their net present value.  In 

other words, 

 

( ) ( ) ( )L LC t L t V t≡ +                          (6) 

 
3.3 Identifying the Risk-Neutral Drifts 
 

In this section we derive recursive expressions for the drifts α and β of the 

forward rate and forward spread processes, respectively, in terms of their volatilities, 

fσ and spreadσ . 

 

First, denote )(tB to be the time t value of a money-market account that uses an 

initial investment of $1, and roll the proceeds over at the default-free short rate；that is, 
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}*)(exp{)(
1/

0
∑

−

=

=
ht

k
hkhrtB                        (7) 

 

Let ( , )Z t T denote the price of a default-free bond discounted using ( )B t . Under Q 

(martingale measure), all asset prices in the economy discounted by ( )B t will be 

martingales. 

 

)(
),(),(

tB
TtPTtZ =                           (8) 

 
Since Z is a martingale under Q, we can get that 

 
)],([),( ThtZETtZ t +=                       (9) 

 
or 
 

( , )[ ] 1
( , )

t Z t h TE
Z t T
+

=                           (10) 

 
Under these assumptions, we can get that 
 

1 1
2 3/ 2

1

1 1

( , )* ln{ [exp{ ( , ) * }]}

T T
h h

t
f

t tk k
h h

t kh h E t kh X hα σ
− −

= + = +

= −∑ ∑         (11) 

 
and 

 
1 1

2 3/ 2
1 2

1 1

[ ( , ) ( , )] ln{ [exp{ [ ( , ) ( , ) ]}]}

T T
h h

t
f spread

t tk k
h h

t kh t kh h E h t kh X t kh Xα β σ σ
− −

= + = +

+ = − +∑ ∑  

(12) 
 

Using these two equations above, we obtain α and β in terms of fσ and spreadσ .  

Under the Heath-Jarrow-Morton term-structure model, we can use the forward rate 

volatility and forward spread volatility to describe the drift terms of forward rate and 

forward spread.  This method can decrease the inputs and simplify the whole model. 
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4. A Continuous-time Model 
   

This section considers the continuous time economy with trading horizon [0,τ]. 
We first redefine the notations of the last section. Let f(t,T) is the instantaneous 
forward rate at time t for a default-free transaction at time T. φ(t,T) denotes the 
instantaneous forward rate on the risky bonds with maturity T. The instantaneous 
forward spread s(t,T) on the risky bonds is defined as the equation (2). The forward 
rate curve process and the forward spread process are assumed to follow the processes 

      ( , ) ( , ) ( , ) ( )f rdf t T t T dt t T dW tα σ= + ,                             (13)                

      ( , ) ( , ) ( , ) ( )s sds t T t T dt t T dW tβ σ= + ,                              (14) 

where ( , )t Tα , ( , )t Tβ are the drift terms and ( , )f t Tσ , ( , )s t Tσ are the volatility 

coefficients. (Wr(t), Ws(t)) is a two-dimensional Brownian motion with instantaneous 
correlation ρ, and where -1≦ρ≦1. In order to price the credit card loan in the 
continuous time economy, we rewrite equation (4) and evaluate it at time 01.  

    
( ) ( )/ 1

0
0

0

( ) exp ( ) exp ( , )
(0)

exp ( , )

T h

L i
i

j

L ih c ih h ih ih h
V E

jh jh h

ϕ

ϕ

−

=

=

⎡ ⎤
⎢ ⎥−⎡ ⎤⎣ ⎦⎢ ⎥= ⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

                 (15) 

By analogy with equation (15), the net present value of the credit card loan at time 0 
is given by 

( ) ( )

( )0 0

0

( ) exp ( ) exp ( , )
(0) .

exp ( , )
L t

L t c t t t
V E dt

u u du

τ ϕ

ϕ

⎡ ⎤
−⎡ ⎤⎢ ⎥⎣ ⎦= ⎢ ⎥

⎢ ⎥
⎣ ⎦

∫
∫

                      (16) 

To obtain a closed-form solution for equation (16), we follow Jarrow and Deventer 
(1998) and consider the stochastic process for L(t) and c(t) as follows: 

   [ ]0 1 2 3log ( ) ( ) ( ),d L t t r t dt dr tα α α α= + + +                             (17) 

   [ ]0 1 2( ) ( ) ( ).dc t r t dt dr tβ β β= + +                                     (18) 

                                                 
1 The derivation of equation (16) can refer to Appendix B.  
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The solutions for the differential equations of (17) and (18) are presented as follows: 

( )2
0 1 2 30

( ) (0)exp / 2 ( ) ( ) (0) ,
t

L t L t t r u du r t rα α α α⎡ ⎤= + + + −⎢ ⎥⎣ ⎦∫             (19) 

    ( )0 1 20
( ) (0) ( ) ( ) (0) .

t
c t c t r u du r t rβ β β= + + + −∫                        (20) 

Substituting equations (19) and (20) into equation (15), we gobtain 

( ) ( )2
0 0 1 2 30 0 0

(0) exp ( , ) (0) exp / 2 ( ) ( ) (0)
t t

LV E u u du L t t r u du r t r
τ

ϕ α α α α⎛ ⎡ ⎤= − ⋅ ⋅ + + + − ⋅⎜ ⎢ ⎥⎣ ⎦⎝ ∫ ∫ ∫
 

         ( )( ) ( )0 1 20
exp (0) ( ) ( ) (0) exp ( ) ( ) .

t
c t r u du r t r r t s t dtβ β β ⎞⎡ ⎤+ + + − − + ⎟⎢ ⎥⎣ ⎦ ⎠∫  

After simplifying the above expression, we can rewrite VL(0) as follows: 

( )( ) ( )2
3 2 0 0 10

(0) (0) exp (0) (0) exp ( ) / 2LV L c r t t
τ

α β α β α= ⋅ − + ⋅ + + ⋅∫  

(( ))0 2 1 3 20 0
exp ( 1) ( ) ( ) ( ) ( )

t t
E r u du r t s u du dtα β α β+ − ⋅ + + −∫ ∫  

    ( ) ( )2
3 0 10

(0) exp (0) exp / 2L r t t
τ

α α α− ⋅ − ⋅ + ⋅∫  

           (( ))0 2 30 0
exp ( 1) ( ) ( 1) ( ) ( ) ( )

t t
E r u du r t s u du s t dtα α− ⋅ + + − +∫ ∫  

                                                                 (21) 
To get a closed-form solution for the value of VL(0), we consider the case of a 

Gaussian economy in which the process of spot rate and spot spread under risk-neutral 
probability measure are as follows: 

      [ ]( ) ( ) ( ) ( )r r rdr t a r t r t dt dW tσ= − +                               (22) 

      [ ]( ) ( ) ( ) ( ),s s sds t a s t s t dt dW tσ= − +                               (23) 

where r(t) = f(t,t) is the instantaneous spot rate, s(t) = s(t,t) is the instantaneous spot 
spread, ra and sa are constants,σr (σs) is the volatility of the spot rate (the spot 
spread). Further, ( )r t  and ( )s t  are the deterministic functions to fit the initial 
forward rate curve {f(0,T), 0≦T≦τ} and forward spread curve {s(0,T), 0≦T≦τ}.  
In order to avoid arbitrage and to match the initial curve, ( )r t  and ( )s t  must 

satisfy the following condictions: 
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      22( ) (0, ) (0, ) / (1 ) / 2 /ra t
r r rr t f t f t t e a aσ −⎡ ⎤= + ∂ ∂ + −⎣ ⎦                   (24) 

22( ) (0, ) (0, ) / (1 ) / 2 / .sa t
s s ss t s t s t t e a aσ −⎡ ⎤= + ∂ ∂ + −⎣ ⎦                   (25) 

The solutions for equations (24) and (25) are then obtained as follows: 

      ( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( )r r

ta t a t u
r r r rr t f t e a e dW uσ σ− − −= + − + ∫                (26) 

      ( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( ).s s

ta t a t u
s s s ss t s t e a e dW uσ σ− − −= + − + ∫                (27) 

Let 

0

0

( )

( )

( )

( )

t

t

r u du

r t
X

s u du

s t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫
 , 

1

2

3

4

( )
( )
( )
( )

t
t
t
t

µ
µ

µ
µ
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , 

2
1 12 13 14

2
21 2 23 24

2
31 32 3 34

2
41 42 43 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t t t

t t t t

t t t t

t t t t

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ ≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , 

     

1

2

3

4

γ
γ

γ
γ
γ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

where X is a vector of normal random variables with mean, μ, and covariance 
matrix, Σ. γ is a vector of constants. Using equations (21), (24), (25), and above 
definitions, we can obtain the closed-form solution for VL(0) as follows: 

( )( ) ( )2
3 2 0 0 10

(0) (0)exp (0) (0) exp ( ) / 2LV L c r t t
τ

α β α β α= − + + + ⋅∫  

      ( ) ( ) ( )2
2 1 3 2 3 0 10

, 1, , 1,0 (0)exp (0) exp / 2M t dt L r t t
τ

α β α β α α α+ − + − − − + ⋅∫  

      ( )2 3, 1, 1, 1,1 .M t dtα α− + −                                       (28) 

where2 ( ) ( )1 2 3 4 0( , , , , ) exp
T X T TM t E eγγ γ γ γ γ µ γ γ≡ = + Σ  is the moment generating  

function of the normal random vector X. 

      ( )( )22 2
1 0 0
( ) (0, ) exp 1 /(2 )

t t

r r rt f u du a u a duµ σ⎡ ⎤≡ + − −
⎣ ⎦∫ ∫  

      ( )( )22 2
2 ( ) (0, ) exp 1 /(2 )r r rt f t a t aµ σ≡ + − −  

                                                 
2 The derivations for these integrals are presented in the Appendix C. 
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      ( )( )22 2
3 0 0
( ) (0, ) exp 1 /(2 )

t t

s s st s u du a u a duµ σ⎡ ⎤≡ + − −
⎣ ⎦∫ ∫  

      ( )( )22 2
4 ( ) (0, ) exp 1 /(2 )s s st s t a t aµ σ≡ + − −  

      ( )( )22 2 2
1 0

( ) 1 exp ( ) /
t

r r rt a t u a duσ σ⎡ ⎤≡ − − −
⎣ ⎦∫  

      ( )2 2
2 0
( ) exp 2 ( )

t

r rt a t u duσ σ≡ − −∫  

      ( )( )22 2 2
3 0
( ) 1 exp ( ) /

t

s s st a t u a duσ σ⎡ ⎤≡ − − −
⎣ ⎦∫  

      ( )2 2
4 0
( ) exp 2 ( )

t

s st a t u duσ σ≡ − −∫  

      ( ) ( )( )22 2
12 ( ) /(2 ) 1 expr r rt a a tσ σ≡ − −  

      ( ) ( )13 0
( ) ( ) 1 exp ( ) 1 exp ( ) /( )

t

r s r s r st a t u a t u a a duσ σ σ ρ≡ − − − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  

      ( ) ( )14 0
( ) ( ) 1 exp ( ) exp ( ) /

t

r s r s rt a t u a t u a duσ σ σ ρ≡ − − − − −⎡ ⎤⎣ ⎦∫  

      ( ) ( )23 0
( ) ( ) 1 exp ( ) exp ( ) /

t

r s s r st a t u a t u a duσ σ σ ρ≡ − − − − −⎡ ⎤⎣ ⎦∫  

      ( )24 0
( ) exp ( ) ( )

t

r s r st a t u a t u duσ σ σ ρ≡ − − − −∫  

      ( ) ( )( )22 2
34 ( ) /(2 ) 1 exps s st a a tσ σ≡ − −  

It is easily to show that the closed-form solution derived by Jarrow and Deventer 
(1998) is a special case of ours when the default risk parameters are set as zero. Hence 
we contribute the literature by adding the components of default risks of credit card 
loans which are an important characteristic observed in such loans. 
 

5 Numerical Procedures 
  In this section we construct a lattice approach to value credit card loans. This 

lattice approach is easily implemented. 

5.1 The Process 

We describe the procedures of constructing the lattice as following contents. 

 

5.1.1 Random variables 
There are two random variables in the model above, 1X and 2X .We assume that 

1X and 2X  are binominal random variables, and each variable respectively takes on 
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the values 1+  and 1−  with probability 1
2

. Let ρ denote the correlation between 

these two variables and note that ρ  may not be equal to zero or constant. It is also 
assumed that the joint distribution of 1 2( , )X X is 

 

1 2

( 1, 1), . .(1 ) / 4
( 1, 1), . .(1 ) / 4

( , )
( 1, 1), . .(1 ) / 4
( 1, 1), . .(1 ) / 4

w p
w p

X X
w p
w p

ρ
ρ
ρ
ρ

+ + +⎧ ⎫
⎪ ⎪+ − −⎪ ⎪= ⎨ ⎬− + −⎪ ⎪
⎪ ⎪− − +⎩ ⎭

                  (29) 

 
 

5.1.2  The term structure of forward rate and forward rate volatility 

 

A forward rate’s term may be three types. One is downward sloping, another is 

upward sloping, and the other is flat. A number of different theories have been 

proposed.  The simplest is the expectations theory, which conjectures that long-term 

interest rates should reflect expected future short-term interest rates. The segmentation 

theory conjectures that there need be no relationship among short-term, medium-term, 

and long-term interest rates. The short-term interest rate is determined by supply and 

demand in the short-term market；the medium-term interest rate is determined by 

supply and demand in the medium-term market；and so on. The liquidity preference 

theory argues that long-term interest rates should always be higher than short-term 

interest rates. The basic assumption underlying the theory is that investors prefer to 

preserve their liquidity. This leads to a situation that the shape of the curve is upward 

sloping.   

 

For implementation reasons, we assume that forward rate volatility is of the form： 

 

( , ) *exp{ ( )}f t T T tσ σ λ= − −                      (30) 

 

where σ  > 0 is a positive constant and 0λ ≥ is a non-negative constant. 

 

This is a more realistic volatility structure for forward rates and is obtained by 

permitting volatility to depend on the forward rate’s maturity, ( )T t− . If 0λ = , then 

forward rate volatility is constant, ( , )f t Tσ σ= . If λ  > 0, then it implies that 



 14

forward rate volatility increases as the maturity, ( )T t− , decreases. This 

exponentially-dampened volatility structure exploits the fact that near-term forward 

rates are more volatile than distant forward rates. 

 

5.1.3 The term structure of forward spread and forward spread volatility 

 

  According to the experiment by Zhou (2001), the term structure of credit spreads 

can generate various shapes, including upward-sloping, downward-sloping, flat, and 

hump-shaped. Hence, we can set the form of the term structure of forward spread with 

different types. 

 

For implementation reasons, we also assume that the forward spread volatility is of 

the form： 

 

( , ) *exp{ ( )}spread s st T T tσ σ λ= − −                   (31) 

 

where sσ  > 0 is a positive constant. 

 

The term structure for forward spread is obtained by permitting volatility to depend 

on the forward spread’s maturity, ( )T t− .  If 0sλ = , then forward spread volatility 

is constant, ( , )spread st Tσ σ= .  If sλ  > 0, it implies that forward spread volatility 

increases as the maturity, ( )T t− , decreases.  By contrast, if sλ  < 0, it implies that 

forward spread volatility decreases as the maturity, ( )T t− , decreases. That is to say, 

there are three possible shapes of forward spread volatility. 

 

5.2 Implementation of our model 

  

Going for implementation, we need the data of forward rate and forward spread.  

By those assumptions above, it may be easily implemented on a lattice. The 

double-binomial structure which is described above results in a branching process 

with four branches emanating from each node. We achieve the risk-neutral drifts, α  

and β , by forward rate volatility and forward spread volatility. Once the risk neutral 

drifts have been computed, the possible value of forward rates and forward spreads 

one period out are obtained. 
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The branching lattice appears as follows. Let uF and dF refer to the forward rates 

that result from F if  1X equals 1+ and 1− , separately.  Let uS and dS refer to 

the forward spreads that result from S if 2X equals 1+ and 1− , separately. The 

probability of each branching depends on the joint distribution of 1 2( , )X X  and is 

shown in equation (13). 

 

Figure 1:  The branching lattice 

 

 

 

 

 

 

 

 

 

 

 

6. Numerical Results 
 

6.1 A simple example 

 

We implement a simple example to demonstrate our model. Consider an economy 

on a finite time interval [0,2] . Periods are taken to be of length h , and h = 0.5 

( half-year ). The cash flow of credit card loans is as follows： 

 

Table 2: The cash-flow of credit card loans for five periods 

 

0 0.5 1 1.5 2 

(0)L−  (0)*exp{ (0)}L c+  (0.5)*exp{ (0.5)}L c+ (1)*exp{ (1)}L c+ (1.5)*exp{ (1.5)}L c+

 (0.5)L−  (1)L−  (1.5)L−   

 

According to the whole model we describe above, we need some input for 

( F , S )

( Fd , Sd )

( Fd , Su )

( Fu , Sd )

( Fu , Su )
( 1+ρ)/ 4

( 1+ρ)/ 4

( 1-ρ)/ 4

( 1-ρ)/ 4



 16

implementation. Depending on the revolving credit amounts in Taiwan shown in 

chapter 1, we set the volume of credit card loans, ( )L t , increasing with a fixed rate, 

g , and the initial credit card loan amounts to NT$100 billion. The half-year growth 

rate, g , is 5%.  According to the paper by Paul S. and Loretta J. (1995), we can find 

that the credit card interest rate is sticky, and thus we set up the credit card interest 

rate at time t , ( )c t , to equal 19% all the time. 

 

We can achieve the risk-neutral drifts, α and β , by forward rate volatility and 

forward spread volatility. Once the risk neutral drifts have been computed, the 

possible values of the forward rates and forward spreads one period out are obtained. 

 

Assume that the forward rate’s volatility, fσ , follows equation (14), the volatility, 

σ , equals 2% and the volatility reduction factor, λ , equals 0.1. That is to say, 

forward rate volatility is 

 

( , ) 0.02*exp{ 0.1( )}f t T T tσ = − −                   (32) 

 

And the term structure of forward rate volatility is shown in Table 4. 

 

Table 3: The term structure of forward rate volatility 

 

( )T t−  0 0.5 1.0 1.5 2.0 

fσ ( )T t−  0.0200 0.0190246 0.0180967 0.0172142 0.0163746 

 

We also set forward spread volatility, spreadσ , with the same form and it follows 

equation (15). The volatility, sσ , equals 2% and the volatility reduction factor, sλ , 

equals 0.1. That is to say, forward spread volatility is 

 

( , ) 0.02*exp{ 0.1( )}spread t T T tσ = − −                  (33) 

 

The term structure of forward spread volatility is shown in Table 4. 
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Table 4: The term structure of forward spread volatility 

 

( )T t−  0 0.5 1.0 1.5 2.0 

spreadσ ( )T t−  0.0200 0.0190246 0.0180967 0.0172142 0.0163746 

 

Using Mathematica (Wolfram 1988), the term structure of forward rate and forward 

spread is as follows： 

 

Table 5: The term structure of forward rate and forward spread 

 

Period T  (0, )T  (0, )f T  (0, )s T  

0 0 ( 0 , 0 ) 0.05 0.008 

1 0.5 ( 0 , 0.5 ) 0.06 0.010 

2 1.0 ( 0 , 1.0 ) 0.07 0.015 

3 1.5 ( 0 , 1.5 ) 0.08 0.020 

4 2.0 ( 0 , 2.0 ) 0.09 0.022 

ρ  -0.074    

 

To make use of the data in Table 6 and the term structure of forward rate volatility 

and forward spread’s volatility, we achieve the double-binomial structure results in a 

branching lattice with four branches emanating from each node. 

 

We now see that the net present value of credit card loans at time 0, (0)LV , equals 

NT$23,071.80641 million, and the value of credit card loan assets to the financial 

institution at time 0, (0)LC , equals NT$123,071.80641 million. 

 

We next will go to the sensitivity analysis. In other words, we further discuss the 

major factors, forward rate, forward spread, forward rate volatility and forward spread 

volatility, in this model and how they affect the values of (0)LV and (0)LC . 

 

6.2 The effects of changes in the term structure of forward rate 

 

The forward rate’s term structure may be different shapes, including downward 

sloping, flat, and upward sloping. We calculate the net present value of credit card 
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The Forward Rate

0

0.02

0.04

0.06

0.08

0.1

f(0,0) f(0,0.5) f(0,1.0) f(0,1.5)

Upward Sloping Flat Downward Sloping

loans at time 0, (0)LV , and the value of credit card loan assets, (0)LC , under these 

three types. 

Figure 2: Three types of term structure of forward rate 

 

 

 

 

 

 

 

 

 

 

The results are shown in Table 7. We can clearly see that when the term structure of 

forward rate is upward sloping, the value of (0)LC  is the smallest. When the term 

structure of forward rate is downward sloping, the value of (0)LC  is the biggest. 

 

We have already set the credit card interest rate to be fixed and equal to 19%.  If 

the term structure of forward rate is upward sloping, it means that the capital cost in 

the future is larger than now.  When the earnings rate is fixed, the value of (0)LC  

under this term structure will get the minimum value within these three situations. 

 

Table 6: The value of (0)LC  under three types of term structure of forward rate 

 

The term 

structure of 

forward rate  

Upward Sloping Flat Downward Sloping

(0,0)f  

(0,0.5)f  

(0,1.0)f  

(0,1.5)f  

0.05

0.06

0.07

0.08

0.05

0.05

0.05

0.05

0.05

0.04

0.03

0.02

(0)LV  23071.80641 25891.17073 29808.70709

(0)LC  123071.80641 125891.17073 129808.70709

Change % --- 2.29% 5.47%
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The Forward Spread

0

0.005

0.01

0.015

0.02

0.025

s(0,0) s(0,0.5) s(0,1.0) s(0,1.5)

Upward Sloping Flat Downward Sloping

 

6.3 The effects of changes in the term structure of forward spread 

 

According to the experiment by Chunsheng Zhou (2001), the term structure of 

credit spreads may generate various shapes.  We discuss here the effects of three 

basic types of forward spread on the net present value of credit card loans at time 0, 

(0)LV , and the value of credit card loan assets, (0)LC . We assume that the term 

structure of forward spread is as shown in Figure 6. 

 

The results are shown in Table 8. The spread catches the default risks in credit card 

loans. We can clearly see that when the term structure of forward spread is upward 

sloping, the value of (0)LC  is the smallest. When the term structure of forward 

spread is downward sloping, the value of (0)LC  is the biggest.  If the term structure 

of forward spread is upward sloping, it means that the default risks in the future are 

larger than now.  It needs more premiums to compensate for the risks. But under the 

situation that the earning rate is fixed, the value of (0)LC will be the smallest.  

 

Figure 2: Three types of term structure of forward spread 
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Table 7: The value of (0)LC  under three types of term structure of  

forward spread 

 

The term 

structure of 

forward spread 

Upward Sloping Flat Downward Sloping

(0,0)s  

(0,0.5)s  

(0,1.0)s  

(0,1.5)s  

0.008

0.010

0.015

0.020

0.008

0.008

0.008

0.008

0.008

0.006

0.003

0.001

(0)LV  23071.80641 23748.61399 24094.39675

(0)LC  123071.80641 123748.61399 124094.39675

Change % --- 0.55% 0.83%

 

6.4 The effects of changes in forward rate volatility 

 

As we mentioned in chapter 3, we assume that forward rate volatility abides by 

equation (14). According to the empirical performance of the single factor, constant 

volatility version of the interest rate contingent claims valuation model of Heath, 

Jarrow, and Morton (1992) by Bjorn Flesaker (1993), which uses a generalized 

method of moments (GMM) and tests on three years of daily data for Eurodollar 

futures and futures options, the result shows that the estimated volatility is extremely 

close to 0.02. The mean value equals 0.0200070, the minimum is 0.196846, and the 

maximum is 0.202845. Following the results of the empirical performance, we 

initially set forward rate’s volatility, σ , to equal 2% and the volatility reduction 

factor, λ , to equal 0.1. We next see the effects of changes in forward rate volatility, 

and discuss in two topics, the volatility and volatility reduction factor. 

 

6.4.1 The effects of volatility 

 

We set the volatility, σ , to equal 2% and change the value to see the effects on the 

net present value of credit card loans at time 0, (0)LV , and the value of credit card 

loan assets, (0)LC . The results are shown in Table 8. 
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Table 8: The value of (0)LC  with different volatility of forward rate volatility 

fσ ( )T t−  σ  = 1% σ  = 2% σ  = 3% σ  = 4% σ  = 5% 

0 

0.5 

1.0 

1.5 

2.0 

0.01 

0.009512 

0.009048 

0.008607 

0.008187 

0.0200

0.019025

0.018097

0.017214

0.016375

0.03

0.028537

0.027145

0.025821

0.024562

0.04 

0.038049 

0.036194 

0.034428 

0.032749 

0.05

0.047562

0.045242

0.043035

0.040937

(0)LV  23072.5635 23071.80641 23070.6711 23068.8847 22958.45694

(0)LC  123072.56335 123071.80641 123070.6711 123068.8847 122958.45694

Change� 0.00615� --- -0.00923� -0.02374� -0.92100�

We can find that when the volatility, σ , increases, the term structure of forward 

rate volatility, fσ , decreases rapidly with the maturity, and the value of (0)LC  

decreases. This exponentially dampened volatility structure exploits the fact that 

near-term forward rates are more volatile than distance forward rates. When the 

volatility increases, it means that the forward rate is more uncertain and this makes the 

value of (0)LC smaller. 

 

6.4.2 The effects of the volatility reduction factor 

 

We also change the value of forward rate’s volatility reduction factor and discuss 

the results, which are shown in Table 9. 

 

Table 9: The value of (0)LC  with different volatility reduction factors of 

forward rate volatility 

fσ ( )T t−  λ  = 0.05 λ  = 0.1 λ  = 0.3 λ  = 0.5 

0 

0.5 

1.0 

1.5 

2.0 

0.0200

0.019506

0.019025

0.018554

0.018097

0.0200

0.0190246

0.0180967

0.0172142

0.0163746

0.0200 

0.017214 

0.014816 

0.012753 

0.010976 

0.0200

0.015576

0.012131

0.009447

0.007358

(0)LV  23071.71402 23071.80641 23072.18038 23072.36517

(0)LC  123071.71402 123071.80641 123072.18038 123072.36517

Change � -0.00075� --- 0.00304� 0.00454�
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We find that when the volatility reduction factor, λ , increases, the slope of the 

term structure of forward rate volatility decreases. This makes the forward rate 

volatility be more stable and also makes the value of (0)LC increase. 

 

6.5 The effects of changes in forward spread volatility 

 

For implementation reasons, we assume that the term structure of forward spread 

volatility abides by equation (15). We first discuss the effects of the volatility 

reduction factor, sλ , and set the value to be positive, zero, and negative. Please see 

Figure 3 and the results are shown in Table 10. 

 

Figure 3: The term structure of forward rate volatility with different  

volatility reduction factors 

 

 

 

 

 

 

 

 

 

 

 

 

We find that if 0sλ = , then the term structure of forward spread volatility is flat；

that is to say, ( , )spread st Tσ σ= . If sλ  > 0, it implies that forward spread volatility 

decreases as the maturity, ( )T t− , increases. By contrast, if sλ  < 0, it implies that 

forward spread volatility increases as the maturity, ( )T t− , increases. When sλ  < 0, 

it makes forward spread volatility be larger than the others and leads to the value of 

(0)LC  being the smallest. 
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Figure 4: The term structure of forward spread volatility with different  

volatility reduction factors 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: The value of (0)LC  under three types of volatility reduction factor of 

forward spread volatility 

 

spreadσ ( )T t−  sλ  = 0.1 sλ  = 0 sλ  = -0.1 

0 

0.5 

1.0 

1.5 

2.0 

0.0200

0.0190246

0.0180967

0.0172142

0.0163746

0.0200

0.0200

0.0200

0.0200

0.0200

0.0200

0.0210254

0.0221034

0.0232367

0.0244281

(0)LV  23071.80641 22972.86488 22855.19066

(0)LC  123071.80641 122972.86488 122855.19066

Change % 0.0805% --- -0.0957%

 

 

6.5.1 The effects of volatility 

 

We further discuss the effects of forward spread volatility under three types of sλ . 

 

I. If sλ  > 0, it implies that forward spread volatility decreases as the maturity, 

( )T t− , increases. We change the volatility, sσ , and see the effects on the 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2

λs= 0 λs= -0.1 λs= 0.1
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net present value of credit card loans at time 0, (0)LV , and the value of 

credit card loan assets, (0)LC . The results are shown in Table 12. 

 

We find that when the volatility, sσ , increases, the term structure of forward 

spread volatility , spreadσ , decreases rapidly with the maturity, and the value of (0)LC  

decreases. This exponentially dampened volatility structure exploits the fact that 

near-term forward spreads are more volatile than distance forward spreads. When the 

volatility increases, it means that the forward spread is more uncertain and makes the 

value of (0)LC smaller. 

 

II. If 0sλ = , it means that the term structure of forward spread volatility is 

flat； that is to say, ( , )spread st Tσ σ= . We change the volatility, sσ , and see 

the effects on the net present value of credit card loans at time 0, (0)LV , 

and the value of credit card loan assets, (0)LC . The results are shown in 

Table 13. 

 

Table 11: The value of (0)LC  with different volatility of forward spread 

volatility under sλ  > 0 

 

spreadσ ( )T t−  sσ  = 1% sσ  = 2% sσ  = 3% sσ  = 4% sσ  = 5% 

0 

0.5 

1.0 

1.5 

2.0 

0.01 

0.009512 

0.009048 

0.008607 

0.008187 

0.0200

0.019025

0.018097

0.017214

0.016375

0.03

0.028537

0.027145

0.025821

0.024562

0.04 

0.038049 

0.036194 

0.034428 

0.032749 

0.05

0.047562

0.045242

0.043035

0.040937

(0)LV  23493.1088 23071.80641 22406.56576 21607.65253 20797.23996

(0)LC  123493.1088 123071.80641 122406.56576 121607.65253 120797.23996

Change % 0.3423% --- -0.5405% -1.1897% -1.8482%
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Table 12: The value of (0)LC  with different volatility of forward spread 

volatility under 0sλ =  

 

spreadσ ( )T t−  sσ  = 1% sσ  = 2% sσ  = 3% sσ  = 4% sσ  = 5% 

0 

0.5 

1.0 

1.5 

2.0 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02

0.02

0.02

0.02

0.02

0.03

0.03

0.03

0.03

0.03

0.04 

0.04 

0.04 

0.04 

0.04 

0.05

0.05

0.05

0.05

0.05

(0)LV  23484.8248 22972.86488 22213.80386 21329.84318 20452.46576

(0)LC  123484.8248 122972.86488 122213.80386 121329.84318 120452.46576

Change % 0.41632% --- -0.61726% -1.33608% -2.04956%

 

We find that when the volatility, sσ , increases, the term structure of forward 

spread volatility , spreadσ , is still flat, and the value of (0)LC  decreases. This 

volatility structure exploits the fact that near-term forward spread volatility is the 

same as the distance forward spread volatility. When the volatility increases, it means 

that the forward spread is more uncertain and this makes the value of (0)LC smaller. 

 

III. If sλ  < 0, it implies that forward spread’s volatility increases as the 

maturity,  ( )T t− , increases.  We change the volatility, sσ , and see the 

effects on the net present value of credit card loans at time 0, (0)LV , and 

the value of credit card loan assets, (0)LC . The results are shown in Table 

14. 

We find that when the volatility, sσ , increases, the term structure of forward 

spread’s volatility , spreadσ , increases rapidly with the maturity, and the value of 

(0)LC  decreases.  This exponentially upward volatility structure exploits the fact 

that near-term forward spreads are more stable than distance forward spreads. When 

the volatility increases, it means that the forward spread is more uncertain and makes 

the value of (0)LC  smaller. 
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Table 13: The value of (0)LC  with different volatility of forward spread 

volatility under sλ  < 0 

spreadσ ( )T t−  sσ  = 1% sσ  = 2% sσ  = 3% sσ  = 4% sσ  = 5% 

0 

0.5 

1.0 

1.5 

2.0 

0.01 

0.010513 

0.011052 

0.011618 

0.012214 

0.0200

0.021025

0.022103

0.023237

0.024428

0.03

0.031538

0.033155

0.034855

0.036642

0.04 

0.042051 

0.044207 

0.046473 

0.048856 

0.05

0.052564

0.055259

0.058092

0.061070

(0)LV  23465.8728 22855.19066 21974.86713 21013.82813 20060.53263

(0)LC  123465.8728 122855.19066 121974.86713 121013.82813 120060.53263

Change % 0.49707% --- -0.71656% -1.49881% -2.27476%

 

We change the volatility, sσ , under three types of term structure of forward spread 

volatility. Comparing Table 11, Table 12, and Table 13, we find that when sλ  < 0, the 

value of (0)LC  changes more than the others. This means that if the slope of the 

term structure of forward spread volatility is upward, then the changes of volatility 

affect the value of (0)LC  more than the others. 

 

6.5.2 The effects of the volatility reduction factor 

I. Under the situation of sλ  > 0, we change the volatility reduction factor 

and see the effects on the net present value of credit card loans at time 0, 

(0)LV , and the value of credit card loan assets, (0)LC . Please see Figure 9 

and the results are shown in Table 15. 

 

Figure 5: The term structure of forward spread volatility with different volatility 

reduction factors under sλ  > 0 
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Table 14: The value of (0)LC  with different volatility reduction factors of 

forward spread volatility under sλ  > 0 

 

spreadσ ( )T t−  sλ  = 0.05 sλ  = 0.1 sλ  = 0.3 sλ  = 0.5 

0 

0.5 

1.0 

1.5 

2.0 

0.0200

0.019506

0.019025

0.018554

0.018097

0.0200

0.019025

0.018097

0.017214

0.016375

0.0200 

0.017214 

0.014816 

0.012753 

0.010976 

0.0200

0.015576

0.012131

0.009447

0.007358

(0)LV  23023.53637 23071.80641 23240.47368 23354.93278

(0)LC  123023.53637 123071.80641 123240.47368 123354.93278

Change % -0.03922% --- 0.13705% 0.23005%

 

We find that when the volatility reduction factor, sλ , increases, the slope of the 

term structure of forward spread volatility decreases. This makes forward spread 

volatility be more stable and also makes the value of (0)LC increase. 

 

Figure 6: The term structure of forward spread volatility with different volatility 

reduction factors under sλ  < 0 
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Table 15: The value of (0)LC  with different volatility reduction factors of 

forward spread volatility under sλ  < 0 

 

spreadσ ( )T t−  sλ  = 0.05 sλ  = 0.1 sλ  = 0.3 sλ  = 0.5 

0 

0.5 

1.0 

1.5 

2.0 

0.0200

0.020506

0.021025

0.021558

0.022103

0.0200

0.021025

0.022103

0.023237

0.024428

0.0200 

0.023237 

0.026997 

0.031366 

0.036442 

0.0200

0.025681

0.032974

0.042340

0.054366

(0)LV  22919.78508 22855.19066 22524.63045 22052.6728

(0)LC  122919.78508 122855.19066 122524.63045 122052.6728

Change % 0.05258% --- -0.26906% -0.65326%

 

 

II. Under the situation of sλ  < 0, we change the volatility reduction factor 

and see the effects on the net present value of credit card loans at time 0, 

(0)LV , and the value of credit card loan assets, (0)LC .  Please see Figure 

10 and the results are shown in Table 16. 

 

We find that when the volatility reduction factor, sλ , increases, the slope of the 

term structure of forward spread volatility increases. This makes the forward spread 

volatility be more volatile and also makes the value of (0)LC decrease. 

 

Before closing this section, we should point out that it is straightforward to apply 

our pricing model to value credit card asset backed securities with default risk. The 

results for how the parameters of default risks affect the value of different trance in 

the credit card asset backed securities are pretty much similar to those of credit card 

loans. Therefore we do not report the results for pricing credit card asset backed 

securities for conciseness.  
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7. Conclusions  

 

Using the risk-neutral pricing methodology, we provide an arbitrage-free model 

for valuing credit card loans and credit card loan ABS. The model is based on 

expanding the Heath-Jarrow-Morton (1990) term-structure model to allow for 

considering default risks. The credit card industry is imperfect competition and the 

interest rate is sticky all the time, and so we use the market segmentation argument to 

describe this characteristic.  

 

Our model has three features. First, it takes existing spreads as an input into the 

model rather than deriving the model from implications on default probabilities and 

recovery rate. Second, rather than work with spot yield curves for default-free and 

risky debt, we work with “forward rates” and “forward spreads”. The advantages of 

using forward rates are that the current term structure is an input to the model and the 

forward rates can describe short rates while the short rates cannot describe forward 

rates. Third, in one hand, we provide a closed-form solution for valuing credit card 

loans and its securitization products in a continuous-time framework. In the other 

hand, we offer an applicable lattice approach to value the credit card loan related 

products in a discrete-time framework. 

 

We find that the shapes of forward-rate term structure and the forward spread 

(default risk premium) play most important roles in determining the value of 

credit-card loans and credit-card asset-backed securities.  
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Appendix A：The derivation of equation (4).   
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Appendix B: The derivation of equation (15) 
 
From equation (4), the net present value of the credit card loan can be expressed as 
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Appendix C: Derivation of expression (28) 
 
From equation (26), we have  
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                                                              (C.2) 
In a similar way, we restate equation (27) as follows: 
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The equations (C.1) to (C.4) are four normal random variables with the following 
means, variances, and covariances, repectively. 
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