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The Sequential Compound Option Pricing with Random 

Interest Rate and Applications to Project Valuation 
 

Abstract 
This paper proposes the pricing formula of sequential compound options (SCOs) 

with random interest rate and the applications call Milestone Project Valuation (MPV). 
Most compound options in literatures are 2-fold with constant parameters through 
time. The multi-fold compound options are just sequential compound CALL options. 
The multi-fold sequential compound options proposed in this study are compound 
option on (compound) option with random interest rate and allow call/put alteration. 
Besides, the parameters can vary in different folds and make the model more flexible. 
The SCOs can enhance and broaden the usages of compound option in real option and 
financial derivative fields, including MPV. The projects that set some critical 
milestones, which should be achieved sequentially, are called milestone projects. This 
study propose the milestone project valuation by SCOs with random interest rate. 
  
Keywords: sequential compound option, project valuation, real option, random 
interest rate, option pricing 
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1. Introduction 
Compound options, the options with options as underlying, are one of the 

important financial innovations. The fold number of a compound option counts how 
many option layers tacking directly on other underlying options. Original compound 
options are proposed by Geske (1979) with 2-fold. A specific multi-fold compound 
option formula is revealed by Carr (1988) while the sequential compound call (SCC) 
is proved by Thomassen & Van Wouwe (2001) and Chen (2003). Chen (2002) and 
Lajeri-Chaherli (2002) prove the 2-fold compound options through risk-neutral 
method simultaneously. Elettra & Rossella (2003) generalized the 2 fold compound 
calls by time-dependent parameters. 

Many financial applications extending from the compound option theory are 
widely employed. The seminal study by Geske and Johnson (1984a) derived the 
analytic American put option under the inspiration of compound option, while Carr 
(1988) presented the sequential exchange options formula. Corporate debt (Geske & 
Johnson, 1984b; Chen, 2003), chooser options (Rubinstein, 1992), capletions and 
floortions (the options of the interest rate options) (Musiela & Rutkowski, 1998) are 
also priced by compound options.  

Besides the financial derivative pricing, the compound option theory is also used 
widely in the real option field originated by Trigeorgis (1993). Several examples 
include capital budget decision (Duan et al., 2003), project valuation of new drugs 
(Cassimon et al., 2004), production and inventory (Cortazar & Schwartz, 1993) . 
Compound options are very common and versatile in many real-world cases 
(Copeland and Antikarov, 2003). 

However, the sophisticated structure of the derivative pricing and the wide 
deployment in the real option field make the current compound option methodology 
insufficient. The 2-fold compound options are not enough for the block-building 
financial innovations whereas the multi-fold compound options focus on the 
sequential compound calls only. Although Remer et al. (2001, p.97) mention that "…, 
in practice, different project phases often have different risks that warrant different 
discount rates", but the important feature of fold-dependent parameters are seldom 
taken into consideration by compound options methodology. 

This paper uses vanilla European options as building blocks and extends the 
compound option theory to multi-fold sequential compound options with random 
interest rate as well as (SCOs) alternating puts and calls (see Table 1). The SCOs are 
(compound) options on compound options, where the option features of different 
folds could be assigned arbitrarily as call or put. The SCOs presented in this paper 
allow the parameters (such as volatility) to vary in different folds. The random interest 
rate model derived by the forward measure enable the long-term SCOs more realistic. 
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The explicit valuation formula and sensitivity analysis of SCOs are proved by the 
risk-neutral method in this study. Comparing with the P.D.E. method, there is more 
financial intuition coinciding with the risk-neutral SCOs derivation.  
 

Table 1 Evolutions of Compound Option Theory 
Generalization 

Reference 
Fold 

Number
Approach Put-Call 

alternating 
fold- 

dependent 
parameters 

Geske (1979) 2 PDE Put/Call No 
Elettra & Rossella (2003) 2 PDE Call Yes 
Chen (2002); Lajeri-Chaherli (2002) 2 Risk-neutral Put/Call No 
Carr(1988), Chen (2003) Multiple Risk-neutral Call No 
Thomassen & Van Wouwe (2001) Multiple PDE Call No 
This Paper Multiple Risk-neutral Put/Call Yes 

 
    The multi-fold SCOs alternating puts/calls with fold-dependent parameters can 
enhance the compound option application, especially in real option fields. The real 
world cases may often be multiple interacting options containing different option 
types (Trigeorgis,1993), such as expansion, contraction, shutting down, abandon, 
switch and or growth. The interaction between different types of options could be 
evaluated by the SCOs. The SCOs proposed in this study make the exotic multiple 
interacting option valuation possible. Also, the financial derivative pricing, such as 
exotic chooser options and capletions, can also employ the SCOs.  
 The applications of SCOs call Milestone Projection Valuation (MPV) is proposed 
in this paper. The projects that set some critical milestones, which should be achieved 
sequentially, are called milestone projects. The milestone projects would fail if any 
one of the serial milestones is not completed. The MPV method is designed for 
multi-stage project based on the results of SCO. Each milestone completion has the 
choice to enter the next stage or not, hence the sequential project milestone could be 
viewed as the sequential compound CALL options.  
 This paper is arranged as the following: section 2 presents the SCOs pricing 
formula. Section 3 exhibits the MPV method. The paper ends with the conclusion. 
 
2. Sequential Compound Options with Random Interest Rate 
   This section defines the notations and derives the multi-fold SCOs with interest 
rate through the forward measure method. The SCOs, composed of European options, 
are the (compound) option on compound options, where the option features of 
different folds could be assigned arbitrarily as either call or put. A foundation theorem 
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constructing the k-variate normal integration by (k–1)-variate for the derivation is 
stated first.   
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(b) The decomposition of a multivariate normal integral (Schroder, 1989) 
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where  is the correlation matrix , kQ kv ≤≤∀1 .  
 

In Theorem 1, (a) reveals that the k-variate normal integral can be constructed 
from the (k–1)-variate by adding another dimension to the upper limit vector and 
correlation matrix. (b) states that the specific multivariate normal integral can be 
partitioned as another two productions of less variate. Before applying this theorem 
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for the sequential compound option pricing, the notations are described as follows.  
Assume Tu-1 < Tu, . For any time interval from T1≥∀u u-1 to Tu ( ) with 

interval size 
1≥u

uτ , its annualized volatility of asset price of this period are 2
uσ . Assume 

the volatility of forward price, )(tσ , is fold-wise constant, it σσ =)( , . 
Denote the asset price at time T

ii TtT ≤<∀ −1

u as Su. Denote the interest rate process r(t), 

and the discount process .  
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    Denote  as the random interest rate i-fold SCO with strike K)( 0Ti
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®
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assumption that the last fold SCO starting from T0. The first fold option, , is 

a vanilla option with the asset as its underlying. It should note that fold numbers come 
in the reverse order.  

)( 11 −
®Ψ iT

The option feature, Λu,u, represents the call or put attribute of the (underlying) 
SCO with fold number (i–u+1) ranging from Tu-1 to Tu, 1≥∀u . If the SCO of this fold 
is a call, Λu,u=1; otherwise, Λu,u=–1 for the put. For example, a call on a put (2-fold 
compound option) starting at T0 has option features with Λ1,1=1 and Λ2,2=–1. 
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h
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1,,, .10,1 ≡Λ  Figure 1 shows the notations of the 

i-fold SCO starting from T0. 
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Figure 1: The Notation of the i-fold Sequential Compound Option
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First fold Last fold Fold number: 
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    Under the same assumption of Thomassen and Van Wouwe (2001) except 
"parameters constant in each fold", the following theorem derives the pricing formula 
of the i-fold SCO with random interest rate alternating calls and puts by the 
risk-neutral method. Although the SCO presented in later section can start at any time 
Tu, the SCO in this theorem is starting from T0 without loss of generality. The notation 
" *v ", meaning "start from time Tv", is designed for time shift in sensitivity derivation. 

Under the above notations, denote  as the time T)( 0Ti
®Ψ 0  SCO price, which is 

represented in Theorem 2.  
 
Theorem 2: Sequential compound option pricing with random interest rate 
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This theorem is proved by induction. Let T be a fixed maturity date and T
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 The (2.1) is true for i=1.  For the case Λ1,1=+1 is exhibited in Shreve (2004) 
and the other case, Λ1,1=－1, can be proved by the similar way.  

 Assume the (2.1) is true for the i-fold compound option , it is showed 
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According to (2.1), the i–fold SCO can be priced by the asset price minus strike 

prices of the i different underlying with weights. The weights are multiplied by three 
factors, including the cumulative option features, the discount factors and the 
in-the-money probabilities. The cumulative option feature is the synthetic option 
feature from the standing fold to the last fold, whereas the discount factor is deduction 
made by either depression or interest rate. The in-the money probabilities are accessed 
for different fold SCOs under different probability measures by the multivariate 
normal integrations. The ai,g and bi,g in the integration are similar to the conventional 
"d1" and "d2" in vanilla options. The correlation matrices of SCOs are similar to the 
sequential compound calls except the sign change due to the cumulative option 
features. For the 3 weighting factors, the impact to the pricing formula by parameters 
of the last fold is the strongest. 

The SCOs formulas are close to those of vanilla options, 2–fold compound 
options and sequential compound calls, which can be regarded as special cases of 
SCOs. The main difference between SCOs and sequential compound calls 
(Thomassen & Van Wouwe, 2001)  lies in alternating calls and puts of SCOs, which 
are manifested by sign changes of cumulative option features, ,  
Moreover, the parameters varying with folds in this study also make the integrated 
volatility different to the vanilla options and Thomassen & Van Wouwe (2001). Thus 
the SCOs setting all  as +1 becomes the sequential compound call. 

gh,Λ hg≤≤∀1 .

gh,Λ

 
3. The Milestone Project Valuation (MPV) 
 This section proposes the Milestone Projection Valuation (MPV) method for the 
multi-stage projects. The projects that set some critical milestones which should be 
achieved sequentially are call milestone projects (see Figure 2 for example). The 
milestone projects are failed if any one of the serial milestones is not completed. The 
milestone projects are very common in real situation, including R&D management, 
manufactures, etc. Originally, the milestone projects are valuated by the methods 
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including the net prevent values (NPV) and decision trees. The NPV method valuates 
a project under a rigorous assumption that all future cash flows are certain. Obviously, 
the uncertainty is ignoring in the NPV method and results in symmetric 
underestimates. Recently, the popular real option approach is applied for flexible 
consideration and reasonable explanation. Under the framework of financial option 
theory, the real option approach decomposes the project valuation as several 
parameters, including the present value, costs, time to maturity, value uncertainty 
(volatility) and interest rate. Most of the existing real option studies for the 
multi-stage milestone project valuations use one-fold options, while the others apply 
multi-fold options under the assumption of constant parameter through whole the 
processes (Casimon et al., 2004). However, the parameters often change due to the 
milestone completion and the project values will be misestimated if parameters are 
assumed constant through all the time. The one-fold real option approach for 
multi-stage project is even inadequate.  
 
 
                                                           New Drug 
                                                          
                                          FDA Approval 
                                    Phase 3 
                              Phase 2 
                      Clinical                                Failure 
                       Phase 1                       Failure 
          Pre-clinical 
           Testing                         Failure 
Discovery                          Failure 
                       

Failure       

               Failure 
 

Figure 2 A Milestone Project: the New Drug Development (NDA) 
 

Based on the results of SCOs (2.1), this paper proposes a method called 
Milestone Projection Valuation (MPV) for multi-stage project valuation. Each 
milestone completion has the choice to enter the next stage or not, and the sequential 
project milestone can be viewed as the sequential compound CALL options. The 
MPV method adopts the results of SCOs and the project is regarded as the 
corresponding stock in SCOs. Under the same denotations as Theorem 2, the MPV 
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valuation formula is expressed as ® 
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                    ......(3.1) 
, where the strikes represent the cost at different stages; the volatilities come from the 
project value fluctuation and the dividend rates are replaced as the depression rates. 

The option features ( ) equal one (for any i, g) due to the underlying compound 

calls, hence disappear in the MPV pricing formula.  

gi,Λ

Compared with the literatures, the MPV not only applies the multi-fold 
compound option theory, but also allows the parameters piece-constant varying with 
the distinct stages. The different parameters of different stages can adapt to the change 
of project nature after the milestone completion. More phenomena can be discovered 
from the parameter comparisons. Under the MPV model, the implicit "valuation 
experience" is decomposed as parameters. 

The new drug developments (NDAs) may be the most famous and significant 
milestone projects.  Under the consideration of human health, the NDAs are the 
well-regulated including the stages of pre-clinical trial, phase 1, phase 2, phase 3 and 
approval phase. Each stage has a definitive milestone. The time- and cost-consuming 
NDAs are the cores of the pharmaceutical companies because the R&D results from 
NDAs dominate their future! The MPV model can enhance the NDAs valuation under 
a more reasonable framework and improve the R&D management of these companies. 
 
4. Conclusion 
    The puts/calls-alternating sequential compound options (SCOs) with random 
interest rate and fold-wise constant parameters are proposed in this study. Based on 
the results, the Milestone Projection Valuation (MPV) method is proposed for 
multi-stage project valuation. 
 Traditional compound options are just either puts/calls-alternating 2-fold 
compound options or multi-fold sequential compound call without 
puts/calls-alternating. Seldom fold-wise differences nor the random interest rate are 
taken into consideration. The SCOs with random interest rate presented in this paper 
have the following specialties. First of all, the multi-fold SCOs with arbitrary fold 
feature assignments as puts or calls can enhance the compound options usage far 
beyond the traditional sequential compound calls. Second, the parameters (interest 
rate, volatility) often vary with time or folds due to different characteristics. The 
presented SCOs formula enables random interest rate and volatility change fold-wise 
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to capture the "sequential" features. The third is that the arbitrary fold number of 
SCOs can be formed. 
 The SCOs not only generalized the contributions of Black-Scholes (1973), Geske 
(1979) and Thomassen & Van Wouwe (2001) to put/call alternating multi-fold 
compound options, but can be evaluated by linear combination of the stock and strike 
prices weighted by different variate normal integrations. Corresponding to intuitions, 
the SCOs seem as the multi-dimensional options extending from Black-Scholes (1973) 
and Geske (1979). The risk-neutral method enriches the SCOs pricing formula 
derivation with financial implications. 
 The SCOs can enhance and broaden the usages of compound option in real 
option and financial derivative fields. The multiple interacting options incorporating 
different type real options sophisticatedly can be evaluated by aggregation of various 
SCOs. The milestone projects, deciding whether the projects are terminated or not by 
the period milestone achievement, also can be evaluated by the SCOs with random 
interest rate. Comparing with the constant volatility in Casimon et al. (2004), the 
volatilities and interest rates estimated for different periods make the project valuation 
more precise and flexible. Besides, more financial derivatives can be developed or 
valuated according to SCOs as the way that chooser options, capletions are priced by 
2-fold compound options. The applications of SCOs with real-world cases will be 
probable future researches.  

The MPV is designed for multi-stage project valuation. The MPV method adopts 
the results of SCO and the project is regarded as the corresponding stock in SCO. 
Compared with the literatures, the MPV not only applies the multi-fold compound 
option theory, but also allows the parameters piece-constant varying with the distinct 
stages. The different parameters of different stages can adapt to the change of project 
nature after the milestone completion. More phenomena can be discovered from the 
parameter comparisons. Under the MPV model, the implicit "valuation experience" is 
decomposed as parameters. 
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