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Abstract

Data Envelopment Analysis (DEA) is widely applied in evaluating the efficiency of banks since it is a method capable of evaluating the efficiency of decision making units in utilizing multiple inputs to produce multiple outputs.  However, some outputs of banks, in fact, possess fuzzy characteristics, while conventional DEA approach can only assess efficiency with a crisp value and is unable to evaluate imprecise data.  Theoretically, the fuzzy DEA approach can evaluate banks’ efficiency more realistic and accurate since it can take the fuzzy characteristics of inputs and/or outputs into consideration.  This study adopts 48 Taiwanese commercial banks as an empirical example to demonstrate the feasibility and the effectiveness in our proposed fuzzy DEA.  The results show that the fuzzy DEA approach could not only effectively characterize uncertainty, but also may have a higher capability to discriminate banks’ efficiency than the conventional DEA approach.
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-cut, imprecise data.
I. Introduction

Data Envelopment Analysis (DEA) is a method capable of evaluating the efficiency of decision making units (DMUs) in utilizing multiple inputs to produce multiple outputs; hence, it is widely applied in evaluating the efficiency of banks (Sherman and Gold, 1985; Aly et al., 1990; Yue, 1992; Miller and Noulas, 1996; Berger and DeYoung, 1997; Berger and Humphrey, 1997).  However, the conventional DEA model can only assess efficiency with a crisp value and is unable to evaluate imprecise data (Kao and Liu, 2000). Thus, Cooper et al. (1999) proposed a unified approach to treating mixtures involving exact as well as imprecise data, while some of the data may be know only within specified bounds, the other data may be known only in terms of ordinal relations. Although the enhanced study provided imprecise data using the DEA approach, it did not deal with data specified in bounded forms.
The outputs of banks, including loan income and investment income, in fact, possess fuzzy characteristics: for example, credit granting is a risky output because of the ex ante risk for loans to eventually become non-performing loans (NPLs) (Li, 2003).  It is difficult to accurately measure how many problem loans might become normal loans and how many normal loans might become problem loans.  As for investment, the investment income of a bank, which is not a constant number, changes daily on account of the market value of the investment target changes daily.  To evaluate banks’ efficiency more realistically and accurately, this study employs the fuzzy DEA model with data specified in bounded forms to measure the efficiency of banks.
Financial institutes in all countries are important parts of the chain in the financial systems.  The quality of the financial institutes determines the level of development of a country’s economy.  A healthy financial institution relies on its asset quality, capacity, asset flow, capital adequate ratio, and etc.  However, competition between financial institutes has recently grown fierce.  Gradual increasing NPLs indeed affect economy seriously.  In the late 1980s, Japanese banks generally lacked an awareness of risks (Hoshi and Kashyap, 1999).  They turned banks into over-loaning enterprises.  By the early 1990s, when the “bubble economy” collapsed, a large scale of enterprises went bankrupt resulting in the insurgence of NPLs in a troubled financial system.  In 1988, more than 200 American commercial banks went bankrupt (see Figure 1), the increase of bad assets and worsening finance exposed the banking industry to liquidity risks and serious financial crisis.  In 1997-98, the Asian financial crisis caused all the countries involved, South Korea, Thailand, Indonesia, Malaysia and so forth, to suffer from drastic increases in overdue loans and a worsening financial condition (Park, 2002).  The affected countries shared common problems of excessive risk-taking, especially after the economical liberalization in Southeast Asia, mainly because these countries lacked an appropriate management system (Kao and Liu, 2004).  Therefore, a high NPL ratio has been a general problem of the global financial industry and results in the predicament of banks’ operations.  The main purpose of this study is to take the fuzzy phenomena of outputs into consideration in order to effectively incorporate NPLs to measure banks’ efficiency.
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Data source: FDIC, Commercial Bank Report, 2005, US.
Figure 1: US Banks’ Bankruptcy in 1980’s

After publishing the fuzzy set that began in 1965, Zadeh applied a mathematical method to express the fuzzy situation in a real environment, and then fuzzy set approach was introduced into engineering science, creating a foundation for the fuzzy set theory.  The theory is widely applied from medicine to engineering to the commercial field.  Fuzzy DEA, combined fuzzy set theory with DEA model, is more capable of handling drawbacks of data than the traditional DEA approach and is able to find the interval for the fuzzy number efficiency score even if the correct efficiency score of the fuzzy number is unavailable.  Furthermore, a possible interval for the efficiency score can be derived given a different  α-cut, and the greater the 
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 value is, the more possible it is to see an accurate efficiency score of the fuzzy number.

Kao and Liu (2000a) applied 
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-cut and the extension principle which Zadeh (1965) proposed to transform a fuzzy DEA model into a conventional crisp DEA model.  The upper and lower bounds on the membership functions of the efficiency score is derived under a specific ( level.  Saati et al. (2002) employed a fuzzy CCR model with an asymmetrical triangular fuzzy number.  Entani et al. (2002) obtained the interval efficiency score from the optimistic and the pessimistic viewpoints and extended the idea into interval data or DEA model with fuzzy data.

This study mainly discusses the influence on bank efficiency with fuzzy outputs and adopts fuzzy set theory to solve problems.  Fuzzy DEA may, in addition to measuring fuzzy data, be applied to establish the upper and lower bounds of the efficiency score and obtain valuable information from the intervals between the upper and the lower bounds under a specific level.  The application of fuzzy DEA model can more realistically represent real-world problems than the conventional DEA models (Lertworasirikul et al., 2003).
The remainder of this paper is organized as follows.  In Section II the Fuzzy DEA model and the process of measuring this problem are discussed and proposed.  An implication example is used to illustrate the proposed model for measuring bank efficiency in Section III. Finally, discussions are presented in Section IV and conclusions are given in Section V. 
II. The Fuzzy DEA Model
Suppose that there are H DMUs producing M outputs by using N inputs.  In Fuzzy DEA, inputs and outputs are characterized by uncertainty, and therefore we use 
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 to represent input n and output m of DMUj, respectively.  Assume that the inputs 
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 of the fuzzy set, respectively.  Note that the crisp value can be represented by degenerated membership functions in which there is only one value in their domain. The fuzzy DEA model can be written as follows:
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where 
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 is a small non-Archimedean quantity.  Kao and Liu (2000) proposed a way to transform the fuzzy DEA model to the traditional crisp DEA model by applying 
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-cut approach.  The 
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where 
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, respectively.  The intervals indicate the corresponding inputs and outputs ranges at each possibility level 
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.  According to Zadeh’s extension principle (1978), the membership function of efficiency evaluation for DMUj may be defined as follows:
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where 
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 is the efficiency score calculated by the conventional BCC model under a set of x and y.  In order to find the bounds of the intervals for 
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 at each possibility level α, Kao and Liu (2000) suggest a pair of mathematical programming, which is function of α, as follows:  
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Model (4a) means that in order to find the minimal relative efficiency of the DMUj compared with others, the data should be applied from the lowest output value of the DMUj and the lowest input value of other DMUs as well as the highest input value of the DMUj and the highest output value of other DMUs.  Similarly, model (4b) indicates that for the maximal relative efficiency of the DMUj compared with others, the data should be applied from the highest output value of the DMUj and the highest input value of other DMUs as well as the lowest input value of the DMUj and the lowest output value of other DMUs.  Furthermore, model (4a) and (4b) are conventional DEA models capable of translating into linear programming to obtain the optimal weights. The (-cut set of fuzzy efficiency score 
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. A different ( value means a different range/interval and a level of uncertainty of the efficiency score.  The greater the ( value is, the smaller the range/interval of upper and lower bounds is and the lower the level of uncertainty is.  The value 
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Fuzzy DEA may result in a fuzzy efficiency score.  Picking the best DMU from numerous fuzzy efficiency scores cannot be solely determined by the fuzzy efficiency score.  Therefore, ranking fuzzy efficiency score becomes the key to finding the best DMU.  There are many ranking methods for fuzzy numbers (Chen, 1985, Tseng and Klein, 1989, Chen and Klein, 1997, Saati et al., 2002; Kao and Liu, 2003).  However, most of the ranking approaches require known membership functions, which are difficult to acquire in the real world.  This study adopts the approach, proposed by Chen and Klein (1997), to rank the fuzzy numbers only based on 
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.  Chen and Klein (1997) defined the following index to rank the fuzzy efficiency scores:
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where 
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.  The DMU with the favored fuzzy efficiency score will have the larger index number.
The fuzzy DEA model of this study may be divided into four steps, as described below:

Step 1.  Determine the type of fuzzy membership function 

We may know, based on the fuzzy set theory, that the membership function sits between 0 and 1.  Generally, the membership function can be classified into a trigonometric function, trapezoidal function, Z-function, and sigmoid function; the trigonometric function and trapezoidal function are more often applied.

Step 2.  Calculate the upper and lower interval values of theα-cut

In accordance with the fuzzy situation of the multi-value, to induce fuzzy space to calculate the upper and lower interval values of the α-cut.

Step 3.  Calculate the upper and lower bounds of the efficiency score 
Calculate the upper and lower bounds of the efficiency score of each DMU, and then repeat to find the upper and lower bounds of the efficiency scores of all DMUs.
Step 4.  Rank the fuzzy efficiency
According to the index proposed by Chen and Klein (1997), we can rank the fuzzy efficiency scores of all DMUs to find the better performing DMU only based on α-cut. Then, we use the model to measure the bank efficiency. An empirical example is illustrated to show the proposed model in next Section.
III. An Empirical Example for Measuring Bank Efficiency
This study takes Taiwanese commercial banks as an example, calculates the data collected on the basis of the trapezoidal function to obtain the upper and lower interval values of each 
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 value, and finds the upper and lower bounds of the efficiency score using model (4).  We then rank the calculated upper and lower bounds of the efficiency score to find the best performing banks.
The sample is the annual data of 48 Taiwanese commercial banks in 2002.  The sources of the data are Taiwan Economic Journal Data Bank, “Conditions and Performance of Domestic Banks Quarterly,” “Financial Institutions Major Business Statistics” published by the Economic Research Department of the Central Bank of Taiwan, and statistics data of foreign bank branches in Taiwan provided by the Bureau of Monetary Affairs, Ministry of Finance in Taiwan.

The choice of inputs and outputs is perhaps the most important task in employing DEA to measure the relative efficiency of the DMUs.  Two approaches are widely used to identify a bank’s inputs and outputs, the production approach (Sherman and Gold, 1985), and the intermediation approach (Aly et al., 1990; Yue, 1992; Miller and Noulas, 1996; Favero and Pepi, 1995).  Under the production approach, banks are treated as a firm to produce loans, deposits, and other assets by using labor and capital.  However, banks are considered as financial intermediaries to transform deposits, purchase funds and labors into loans and other assets under the intermediation approach.  More specifically, deposits are treated as an input under the production approach and an output under the intermediation approach.
This study views banks as intermediation institutions and adopts the concept of the intermediation approach to recognize outputs and inputs.  Hence, the outputs include loan, investment, and other income, while the inputs consist of the number of employees, total fixed asset, and deposits.  We treat loan and investment as fuzzy items and analyze the efficiency of the banking industry with a trapezoidal function from the fuzzy set theory.  The advantage of the trapezoidal function is that imprecise outputs still retain the fuzzy characteristics (interval values) when α=1. The trigonometric function, another widely used function in fuzzy set theory, regresses into a single value when α=1 without the fuzzy phenomena.

The leftmost value and the rightmost value of loan and investment, characterized by fuzzy phenomena, in the trapezoidal function (
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 in Figure 2) must be determined first.  In terms of the loan variable, this study places the loan variable in the middle (
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.  In terms of the investment variable, considering that investment involves profits and losses from two items, including buying and selling stocks and bills and long-term investment of equity shares, this study places the investment variable in the middle (
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).  Adding and subtracting two times the profit or loss from buying and selling stocks and bills and long-term investment of equity shares from 
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, to find the upper and lower interval values of loan and investment of all the sample banks so as to calculate the fuzzy efficiency score of each bank in this empirical example.
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After the upper and lower bounds of loan and investment of all sample banks are derived in step 2, we can make use of the concept from models (4a) and (4b) to find the upper and the lower bounds of the relative efficiency score of each bank.  Table 1 shows the possible upper and lower bounds of efficiency scores of each sample bank under each 
[image: image72.wmf]a

-cut.  The value 
[image: image73.wmf]0

=

a

 means the range that the efficiency score must fall within, and 
[image: image74.wmf]1

=

a

 means what the efficiency score is most likely to be.  The greater the 
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 value is, the smaller the interval will be between the upper and lower bounds of the efficiency score.  For example, the efficiency score of Bank 5 (the name of banks and their corresponding series numbers of sample banks list in Appendix) is not less than 0.916 and not greater then 0.969 (
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), while its efficiency score is most likely between 0.929 and 0.956 (
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).  Table 1 also shows that the minimal value is 0.479 and the maximum value is 1.  There are 14 banks (Bank 1, 3, 4, 7, 11, 16, 20, 30, 31, 35, 36, 43, 45, and 47) with the upper and lower bounds of an efficiency score of 1.  Hence, these 14 banks have efficiency score 1 with a crisp value.
Table 1: Fuzzy Efficiency Scores of Taiwanese Commercial Banks under ( Value

	Sample Banks
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	1
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	2
	(0.588, 0.803)
	(0.596, 0.791)
	(0.605, 0.780)
	(0.613, 0.769)
	(0.622, 0.757)
	(0.632, 0.746)

	3
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	4
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	5
	(0.916, 0.969)
	(0.918, 0.966)
	(0.921, 0.964)
	(0.924, 0.961)
	(0.926, 0.958)
	(0.929, 0.956)

	6
	(0.932, 1.000)
	(0.946, 1.000)
	(0.960, 1.000)
	(0.974, 1.000)
	(0.988, 1.000)
	(1.000, 1.000)

	7
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000,1.000)
	(1.000,1.000)

	8
	(0.870, 1.000)
	(0.880, 1.000)
	(0.890, 1.000)
	(0.900, 1.000)
	(0.911, 1.000)
	(0.921, 1.000)

	9
	(0.928, 1.000)
	(0.938, 1.000)
	(0.948, 1.000)
	(0.958, 1.000)
	(0.968, 1.000)
	(0.978, 1.000)

	10
	(0.762, 1.000)
	(0.775, 1.000)
	(0.788, 1.000)
	(0.801, 1.000)
	(0.815, 1.000)
	(0.829, 0.985)

	11
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	12
	(0.786, 0.855)
	(0.791, 0.854)
	(0.797, 0.853)
	(0.802, 0.852)
	(0.808, 0.851)
	(0.814, 0.850)

	13
	(0.635, 0.768)
	(0.642, 0.762)
	(0.649, 0.756)
	(0.655, 0.750)
	(0.662, 0.744)
	(0.669, 0.738)

	14
	(0.804, 0.861)
	(0.807, 0.858)
	(0.810, 0.855)
	(0.812, 0.852)
	(0.815, 0.849)
	(0.818, 0.846)

	15
	(0.676, 0.843)
	(0.683, 0.834)
	(0.691, 0.826)
	(0.700, 0.818)
	(0.710, 0.810)
	(0.719, 0.802)

	16
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	17
	(0.912, 1.000)
	(0.928, 1.000)
	(0.945, 1.000)
	(0.961, 1.000)
	(0.978, 1.000)
	(0.995, 1.000)

	18
	(0.880, 1.000)
	(0.886, 0.998)
	(0.892, 0.992)
	(0.898, 0.985)
	(0.904, 0.979)
	(0.910, 0.973)

	19
	(0.982, 1.000)
	(0.988, 1.000)
	(0.994, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	20
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	21
	(0.745, 0.807)
	(0.749, 0.805)
	(0.753, 0.803)
	(0.757, 0.801)
	(0.761, 0.798)
	(0.765, 0.796)

	22
	(0.632, 0.744)
	(0.637, 0.738)
	(0.643, 0.732)
	(0.649, 0.727)
	(0.654, 0.721)
	(0.660, 0.716)

	23
	(0.616, 0.835)
	(0.622, 0.821)
	(0.627, 0.809)
	(0.634, 0.796)
	(0.642, 0.784)
	(0.650, 0.772)

	24
	(0.479, 1.000)
	(0.483, 1.000)
	(0.491, 1.000)
	(0.512, 1.000)
	(0.550, 1.000)
	(0.593, 1.000)

	25
	(0.886, 0.965)
	(0.890, 0.961)
	(0.894, 0.958)
	(0.898, 0.954)
	(0.903, 0.950)
	(0.907, 0.946)

	26
	(0.952, 1.000)
	(0.954, 1.000)
	(0.956, 1.000)
	(0.958, 1.000)
	(0.960, 1.000)
	(0.962, 1.000)

	27
	(0.786, 0.921)
	(0.793, 0.914)
	(0.800, 0.908)
	(0.807, 0.901)
	(0.814, 0.895)
	(0.820, 0.888)

	28
	(0.652, 0.734)
	(0.656, 0.730)
	(0.660, 0.725)
	(0.664, 0.721)
	(0.668, 0.716)
	(0.672, 0.712)

	29
	(0.814, 0.958)
	(0.821, 0.951)
	(0.828, 0.944)
	(0.836, 0.937)
	(0.844, 0.930)
	(0.851, 0.923)

	30
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)


Table 1: (continued)
	31
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	32
	(0.600, 0.736)
	(0.605, 0.729)
	(0.611, 0.722)
	(0.616, 0.714)
	(0.622, 0.707)
	(0.628, 0.700)

	33
	(0.629, 0.752)
	(0.636, 0.747)
	(0.642, 0.741)
	(0.649, 0.736)
	(0.656, 0.730)
	(0.663, 0.725)

	34
	(0.721, 0.882)
	(0.728, 0.873)
	(0.735, 0.865)
	(0.742, 0.856)
	(0.750, 0.848)
	(0.757, 0.839)

	35
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	36
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	37
	(0.759, 1.000)
	(0.777, 1.000)
	(0.796, 1.000)
	(0.815, 1.000)
	(0.834, 1.000)
	(0.854, 1.000)

	38
	(0.849, 0.962)
	(0.855, 0.956)
	(0.860, 0.951)
	(0.866, 0.946)
	(0.872, 0.940)
	(0.878, 0.935)

	39
	(0.569, 0.672)
	(0.575, 0.667)
	(0.580, 0.662)
	(0.586, 0.657)
	(0.591, 0.652)
	(0.596, 0.647)

	40
	(0.545, 0.702)
	(0.552, 0.694)
	(0.560, 0.686)
	(0.567, 0.678)
	(0.575, 0.670)
	(0.583, 0.662)

	41
	(0.617, 0.824)
	(0.627, 0.814)
	(0.639, 0.804)
	(0.653, 0.794)
	(0.668, 0.783)
	(0.678, 0.773)

	42
	(0.663, 0.988)
	(0.663, 0.961)
	(0.663, 0.933)
	(0.663, 0.906)
	(0.663, 0.883)
	(0.663, 0.860)

	43
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	44
	(0.988, 1.000)
	(0.988, 1.000)
	(0.988, 1.000)
	(0.988, 1.000)
	(0.988, 1.000)
	(0.988, 1.000)

	45
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	46
	(0.918, 0.968)
	(0.920, 0.965)
	(0.922, 0.963)
	(0.924, 0.960)
	(0.927, 0.957)
	(0.929, 0.955)

	47
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)
	(1.000, 1.000)

	48
	(0.917, 1.000)
	(0.917, 1.000)
	(0.917, 1.000)
	(0.919, 1.000)
	(0.921, 1.000)
	(0.923, 1.000)


Note: (1) the number of left side in parentheses is the lower bound of fuzzy efficiency score, and the number of right side in parentheses is the upper bound of fuzzy efficiency score;
(2) this table lists only 6 ( values, e.g. ( = 0, 0.2, 0.4, 0.6, 0.8, 1;
(3) see Appendix for the serial numbers of sample banks.

This study employs the index proposed by Chen and Klein (1997) to rank the fuzzy efficiency scores of all banks.  A bank with the larger index number is associated with a more preferred fuzzy efficiency score.  Note that the ranking index is not the Farrell efficiency (Farrell, 1957).  The indices only serve to rank DMUs with the fuzzy efficiency scores.  Theoretically, this approach requires the number of (-cuts, T, to be large enough.  However, Chen and Klein (1997) argued that T = 3 or 4 is sufficient to discriminate DMUs.  Table 2 shows that there are 14 efficient banks (with a ranking index of 1), which are corresponding to those banks with the upper and lower bounds of an efficiency score of 1 in Table 1.  Other banks are inefficient (with a ranking index to be less than 1), which are those banks with at least one lower bound of less than 1; for example, the ranking index is 0.989 for Bank 19, which has the upper and lower bounds of an efficiency score of 1 when ( ( 0.6 while its lower bounds are less than 1 when ( ( 0.4 (upper bounds are still 1).
Table 2 Ranking of Fuzzy Efficiency Score of Taiwan’s Commercial Banks

	Ranking
	Sample Bank
	Ranking Index
	Ranking
	Sample Bank
	Ranking Index

	1
	1
	1.000
	25
	18
	0.829

	1
	3
	1.000
	26
	25
	0.821

	1
	4
	1.000
	27
	38
	0.774

	1
	7
	1.000
	28
	29
	0.733

	1
	11
	1.000
	29
	37
	0.728

	1
	16
	1.000
	30
	10
	0.717

	1
	20
	1.000
	31
	27
	0.684

	1
	30
	1.000
	32
	14
	0.665

	1
	31
	1.000
	33
	12
	0.651

	1
	35
	1.000
	34
	34
	0.594

	1
	36
	1.000
	35
	21
	0.568

	1
	43
	1.000
	35
	42
	0.568

	1
	45
	1.000
	37
	15
	0.531

	1
	47
	1.000
	38
	24
	0.518

	15
	19
	0.989
	39
	41
	0.475

	16
	44
	0.977
	40
	23
	0.468

	17
	6
	0.940
	41
	13
	0.441

	18
	26
	0.924
	42
	2
	0.431

	19
	17
	0.918
	43
	33
	0.423

	20
	9
	0.917
	44
	28
	0.419

	21
	48
	0.865
	45
	22
	0.414

	22
	46
	0.863
	46
	32
	0.382

	23
	5
	0.862
	47
	40
	0.318

	24
	8
	0.833
	48
	39
	0.302


IV. Discussions

Empirical results show that there are 14 banks (Bank 1, 3, 4, 7, 11, 16, 20, 30, 31, 35, 36, 43, 45, and 47) with the upper and lower bounds of an efficiency score of 1; in other words, they are efficient banks surely.  These banks, of course, are also efficient under the conventional crisp DEA model.  However, there are another 5 banks, Bank 6, 9, 17, 19, and 44, that are efficient (with efficiency score 1) under non-fuzzy condition, while their ranking indices are less than 1 with rankings between 15 and 20 (i.e., at least one lower bound is less than 1) under fuzzy condition.  This may indicate that the fuzzy DEA approach might have a higher ability to discriminate between efficient and inefficient banks than the conventional DEA approach.  The average NPLs ratio of Taiwanese commercial banks is 9.08% in 2002, while in our study it is 20.07% for Bank 44.  This average ratio from 2002 implies that its quality of loans is far below average in Taiwan’s banking industry.  The traditional crisp DEA model without adjusting the quality of loans indicates that Taiwan’s banking industry is efficient, while the fuzzy DEA model with adjusting for the quality of loans identifies the banking industry to be inefficient.  Hence, a better approach to measuring banks’ efficiency is to adjust effectively the loan and/or investment quality.
There are 12 banks, Bank 6, 8, 9, 10, 17, 18, 19, 24, 26, 37, 44, and 48, with upper value of 1when ( = 1 (the widest interval), indicating that the best efficiency score of these banks might be 1 (i.e., each of them is a possible efficient bank).  Nevertheless, their lower bounds, in which the efficiency scores will never fall below, show great variation from 0.479 to 0.988 with rankings between 15 and 38.  The other 22 banks are unlikely to be efficient since their upper bounds are less than one for all ( values.  Furthermore, the banks with lower quality of loans and/or investment will have a wider interval, suggesting that the fuzzy DEA model can characterize uncertainty effectively.
Operational performance is especially more important under the fierce competition and rapid changing environment of the banking industry.  Compared with previous studies of evaluating bank efficiency with the DEA approach, the greatest feature of Fuzzy DEA is that it is able to resolve the uncertainty in the production process (Cooper et al., 1999; Kao and Liu, 2000; Guo and Tanaka, 2001; Despotis and Smirlis, 2002), which the conventional DEA could not handle.

V. Conclusions
DEA is widely applied to measure the performance of the banking system since it is capable of evaluating the efficiency of DMUs with multi-output and multi-input.  Previous studies used the conventional DEA model to measure banks’ efficiency by assuming that all inputs and outputs are crisp.  However, loan and investment, the outputs of banks, do posses fuzzy phenomena because of the imprecise NPLs and the sizeable volatility of the stock market.  The fuzzy DEA approach can evaluate the efficiency of banks more accurately and realistically since it can take into account the fuzzy characteristics of inputs and/or outputs.
This study takes the fuzzy phenomena of loan income and investment income into consideration and employs the fuzzy DEA approach to evaluate Taiwanese commercial banks.  The empirical results show that the fuzzy DEA approach could not only successfully characterize the uncertainty of efficiencies, but also may have the higher ability to discriminate banks’ efficiency than the traditional DEA model.  The other findings are as follows:  (1) There are 14 banks with precise efficiency score of 1 even though their loans and investments characterized by fuzzy phenomena; (2) Twelve inefficient banks with at least one upper bound to be one still has the possibility to be efficient; (3) There are 22 banks that are unlikely to be efficient since all of their upper and lower bounds are less than 1.
There are several possible extensions for this study.  We can apply this approach to analyze other financial institutions, such as foreign-owned banks and credit unions. Furthermore, this method can help us to investigate financial institutions with missing and/or incomplete data.
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Appendix:  Serial numbers of sample banks:
	No
	Bank
	No
	Bank

	1
	Chiao Tung Bank
	25
	Taishin International Bank

	2
	The Farmers Bank of China
	26
	Fubon Bank

	3
	Bank of Taiwan
	27
	Ta Chong Bank

	4
	Taipei Bank
	28
	Jih Sun International Bank

	5
	Bank of Kaoshiung
	29
	EnTie Bank

	6
	Land Bank of Taiwan
	30
	Chinatrust Commercial Bank

	7
	Taiwan Cooperative Bank
	31
	Chinfon Bank

	8
	First Commercial Bank
	32
	Macoto Bnk

	9
	Hua Nan Commercial Bank
	33
	Sunny Bank

	10
	Chang Hwa Commercial Bank
	34
	Bank of Panshin

	11
	The International Commercial Bank of China
	35
	Lucky Bank

	12
	United World Chinese Commercial Bank
	36
	Kao Shin Commercial Bank

	13
	Hua Chiao Bank
	37
	Taiwan Business Bank

	14
	The Shanghai Commercial & Savings Bank Ltd.
	38
	International Bank of Taipei

	15
	Grand Commercial Bank
	39
	Hsinchu International Bank

	16
	Union Bank of Taiwan
	40
	Taichung Commercial Bank

	17
	The Chinese Bank
	41
	Tainan Business Bank

	18
	Far Eastern International Bank
	42
	Kaohsiung Business Bank

	19
	Fuhwa Bank
	43
	Enterprise Bank of Hualien

	20
	Bank Sinopac
	44
	Taitung Business Bank

	21
	E. Sun Bank
	45
	Cathay United Bank

	22
	Cosmos Bank, Taiwan
	46
	Hwatai Bank

	23
	Pan Asia Commercial Bank
	47
	COTA Commercial Bank

	24
	Chung Shing Bank
	48
	United-Credit Commercial Bank
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Figure 2 Trapezoidal Membership Function
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