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DIVIDEND PERSISTENCE AND RETURN PREDICTABILITY 
 

 

1. INTRODUCTION 

 
 Evidence of dividend yield return predictability has been presented so widely and 

consistently that the result has tended to be generally accepted, with debate instead 

shifting to whether the predictability is due to risk and return considerations or other 

explanations such as market inefficiency. This paper shows that return predictability of 

the dividend yield is a spurious result that is due to dividend persistence, and it finds that 

standard dividend behaviour explanatory models are also strongly affected by the 

spurious regression problem. The paper demonstrates how the spurious regression 

problem is compounded when the dependent and independent variables in a regression 

equation are ratios constructed from common component variables, as happens with 

dividend yield return predictability and dividend behaviour regression models. A 

simulation procedure is utilized to take account of this problem, and the paper derives a 

reformulated dividend explanatory model to indicate how this econometric problem can 

be avoided. 

A first hint that return predictability of the dividend yield is spurious can be 

obtained by examining how the dividend yield predicts returns relative to other persistent 

variables. A standard approach to test for dividend yield return predictability is to regress 

the time t+1 stock index rate of return ( 1tr + ) against the time t dividend yield ( tD / tP ) 

using the regression equation 
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where tD is the level of real annual dividends during the twelve months preceding time t 

and tP  is the real stock index level at time t. The adjusted R2 statistic for regression 

equation (1) for the annual CRSP value-weighted NYSE Index during the time period 

1927 to 1996 is close to 3%, for instance, and the results are usually interpreted in 

relation to a correlation between the current level of dividends and subsequent returns 

(see, e.g., Campbell, Lo and MacKinlay, 1997).1 It can be noted, however, that if 

variation in dividends plays an important role in the return predictability relationship then 

substituting a constant level of dividends (c) for the dividend term ( tD ) in the numerator 

of the dividend yield variable ( tD / tP ) in regression equation (1) should reduce or 

eliminate return predictability in the following altered regression equation 
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where c the is the unconditional average of the dividend level during the sample period. 

Surprizingly, the adjusted R2 for equation (2) actually rises to above 4% for the value-

weighted NYSE Index. This unexpected result is a first indication that a spurious effect 

might be occurring and is a very strong hint of a spurious regression problem. 

To explore this possibility, the persistence properties of the independent variables 

in regression equations (1) and (2) are examined. They are found to be highly persistent, 

and this persistence combines with return autocorrelation to create spurious return 

predictability (see Ferson, Sarkissian and Simin, 2003a; Foster, Smith and Whaley, 
                                                 
1 Lewellen (2004) points out that dividend yield return predictability could also be due to temporary 
mispricing, an interpretation that will be discussed in Section 3.     
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1997).2 The spurious effect of regressing returns against a persistent dividend yield 

variable is then shown to be strongly reinforced by a spurious correlation that is due to 

returns on the left hand side of equation (1) and the dividend yield on the right hand side 

being ratios that are constructed from the same underlying variables (the share index 

level and the dividend level). Spurious correlation due to common regression variable 

components therefore combines with the persistence properties of the dividend yield to 

account for the apparent dividend yield return predictability, rather than (as widely 

argued) any property of the dividend level that is related to risk, return or mispricing. 

Given the strong persistence properties of dividends, it is not surprising to find 

that standard dividend explanatory models such as Lintner (1956) and Marsh and Merton 

(1987) are also strongly affected by the spurious regression problem, since the dependent 

and independent variables in these models are all very persistent (see also Ferson, 

Sarkissian and Simin, 2003a). To correct this problem, the paper demonstrates how the 

Lintner behavioural model of dividends can be reformulated and extended using Marsh 

and Merton (1987) so that the model is not subject to spurious regression.  

The structure of the paper is as follows. Section 2 contains a review of the 

dividend yield return predictability and dividend behaviour literature. The spurious 

regression literature is then reviewed to indicate the potential problems that might be 

present with the return predictability and dividend behaviour literature. Section 3 shows 

that something “funny” is going on in the return predictability literature by using other 

highly persistent explanatory variables to improve on standard dividend yield return 

                                                 
2 Campbell, Lo and MacKinlay (1997) demonstrate that stock index returns are autocorrelated, for instance, 
and Ferson, Sarkissian and Simin (2003a) point out that even if returns are not highly persistent, underlying 
expected returns are persistent, so there is a risk of spurious regression when testing return predictability. 
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predictability results, and then shows that all the results are spurious. Section 4 

demonstrates how standard dividend behaviour regression equations are also subject to 

spurious regression. Section 5 corrects this problem by reformulating the Lintner (1956) 

dividend model. Section 6 provides a brief conclusion to the paper. 

 

2. LITERATURE REVIEW 

 
2.1 Dividend Yield Return Predictability 

The literature on stock return predictability is extensive, with the dividend yield 

arguably being the best-known of the many different variables that are found to have 

forecasting power for stock returns. The dividend yield is usually measured as the ratio of 

the previous year’s dividend payments to the current share price index level. This process 

removes the influence of strong seasonal effects in dividend payments, but it also 

artificially raises autocorrelation in monthly and quarterly overlapping dividend yield 

series.  

Many studies find that dividend yields predict a substantial amount of the cross-

sectional and times series variation of stock returns (see, e.g., Litzenberger and 

Ramaswamy, 1982; Fama and French, 1988; Harvey, 1989; Ferson and Harvey, 1991; 

Whitelaw, 1994; Pesaran and Timmermann, 1995; Pontiff and Schall, 1998; Bossaerts 

and Hillion, 1999; Cremers, 2002; and Lewellen, 2004). Table 1 summarizes these 

results. Kothari and Shanken (1997) present evidence that the dividend yield also tracks 

variation in expected real one-year stock returns. Litzenberger and Ramaswamy (1982) 

report a positive but non-linear association between stock returns and dividend yields. 

Fama and French (1988), Campbell and Shiller (1988a) and Poterba and Summers (1988) 
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find that dividend yields are positively related to the future returns of long-term bonds as 

well as stocks. Lewellen (2004) finds evidence in favour of return predictability using the 

natural logarithm of the dividend yield once a small sample bias correction is improved to 

more precisely account for a coefficient estimate bias that is induced by a strong 

correlation between the dividend yield slope coefficient and the dividend yield’s 

autocorrelation. Campbell and Yogo (2003) find that the Lewellen (2004) bias-corrected 

test has poor power relative to Bonferroni inequality probability confidence interval tests 

when persistence does not equal unity, but never-the-less find weak evidence in support 

of dividend yield return predictability using a Uniformly Most Powerful (UMP) test. The 

Campbell and Yogo (2003) UMP test subtracts from the dividend yield dependent 

variable the innovations in the yield that are correlated with returns in order to reduce the 

independent variable’s noise and consequently to increase the power of the return 

predictability regression coefficient significance test. 

[Table 1 about here] 

In contrast, only a few studies indicate that there is not a strong statistical 

relationship between dividend yields and stock returns, including Black and Scholes 

(1974) and Goetzmann and Jorion (1993, 1995). Bossaerts and Hillion (1999) use a 

number of statistical model selection criteria to examine the predictability of stock returns 

using dividend yields and find in-sample predictability but no out-of-sample forecasting 

power. Goyal and Welch (2003) find the predictive power of the dividend yield is present 

in pre- but not post-1990 data. Stambaugh (1999) finds that return predictability 

disappears when the bias induced by a correlation between the regression error and 

innovations in the autoccorelated dividend yield regressor is accounted for using 
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Bayesian autocorellation priors. Ferson, Sarkissian and Simin (2003a) indicate that the 

dividend yield’s predictive power for monthly returns is questionable when account is 

taken of the spurious regression problem combined with data mining.     

Dividend yields have also been used to predict long horizon returns (e.g. Fama 

and French, 1988; Campbell, Lo and MacKinlay, 1997). Fama and French (1988) 

estimate regressions of returns on the lagged dividend yield using post-war NYSE index 

data for return horizons from one month to four years. They observe that the dividend 

yield explains a significant proportion of multiple year returns, and the explanatory 

power of the dividend yield increases with the return horizon. Hodrick (1992) uses three 

alternative methods of conducting inference and measurement for long-horizon 

forecasting and finds that changes in dividend yields forecast significantly persistent 

changes in expected stock returns. 

Theoretical explanations for the predictive power of the dividend yield have been 

developed using the dividend discount model (see, e.g., Campbell and Shiller, 1988a and 

1988b; Fama and French, 1988; Donaldson and Kamstra, 1996; and Campbell, Lo and 

MacKinlay, 1997). Campbell and Shiller (1988a, 1988b) and Fama and French (1988) 

argue that the dividend discount model implies that a high current dividend level relative 

to the share price index level predicts some combination of either higher expected future 

returns or lower future dividends. A high current dividend yield therefore forecasts higher 

future returns if expected future dividends are held constant (e.g., under the perhaps 

strong assumption of “all else being equal”), thus providing a theoretical basis for 

dividend yield return predictability.  
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Although the dividend yield return predictability literature is vast and theoretical 

explanations for predictability are also well-known, this literature has not been directly 

connected to the equally well-known literature on behavioural explanations of dividends 

(see, e.g., Lintner, 1956; Marsh and Merton, 1987). A review of the dividend behaviour 

literature provides insights as to why dividend yield return predictability regression 

models are likely to be strongly affected by dividend persistence. 

 

2.2 Dividend Behaviour 

The starting point for a discussion of behavioural models of dividends is the 

Lintner (1956) speed of adjustment model (see, eg., Marsh and Merton, 1987). Lintner 

(1956) argues that corporate managers feel that they have a duty to pay out a proportion 

of earnings to shareholders, but are reluctant to increase dividends too quickly in reaction 

to an increase in earnings in case the earnings increase turns out to be temporary and the 

dividend increase subsequently has to be reversed. The Lintner (1956) model of 

dividends therefore implies that the current change in dividends is equal to a target 

dividend payout minus last period’s dividend ( 1−tD ) times a speed of adjustment factor, 

plus a constant. The target payout is equal to the current level of trailing annual earnings 

( tE ) times a long run payout ratio target. The current dividend level ( tD ) does not adjust 

instantaneously to the target payout level, thus avoiding the situation where an increase in 

earnings is only temporary and would have to be reversed in future years. Lintner’s 

dividend model (equation (2) in Lintner, 1956) therefore states that the time t dividend is 

given by 

0 1 2 1t t t tD E Dθ θ θ ε−= + + + ,         (3) 
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where t is in years, tε  is the error term, 1 2/(1 )θ θ−  is the long-run target payout ratio, and 

2(1 )θ−  is a speed-of adjustment factor whose value will be closer to zero the more 

slowly that firms adjust their dividends to their long-run target level. Lintner (1956) 

reports an R2 in excess of 90% when testing this model (regression equation (3)) using 

aggregate dividends and earnings data. Grullon and Michaely (2002) use the Lintner 

(1956) model to generate dividend forecast errors for companies in order to test whether 

share repurchases are substitutes for dividends, thus updating the Lintner (1956) results 

for individual companies, but they do not test the Lintner (1956) model using aggregate 

dividends (see also Fama, 1974).3  

It can be noted that current time t earnings have not yet been observed when the 

current dividend level is decided upon and declared, since companies report their 

earnings after the end of the quarter whereas dividends are decided upon and announced 

prior to their payment each quarter. This problem can be eliminated in the Lintner model 

by lagging earnings by either a quarter or a year so that the time t dividend level choice is 

modelled only in relation to information that is observable at time t:   

0 1 1 2 1t t t tD E Dθ θ θ ε− −= + + + .          (4) 

 Underlying the Lintner model is the idea that dividends would not be adjusted to 

changes in earnings that are only temporary, so Marsh and Merton (1987) introduce the 

concept of permanent earnings into dividend behaviour models and argue that dividends 

will only be determined in relation to permanent earnings. They further argue that, in an 

efficient market, the current share price index level is equal to the present value of all 

                                                 
3 The average adjusted R2 they obtain of 45.7% is not directly comparable with the Lintner (1956) results 
because Grullon and Michaely (2002) estimate the Lintner model using changes in dividends (equation (1) 
in Lintner, 1956), not the dividend level regression model that Lintner (1956) tests (see equation (3) above), 
but the parameter estimates obtained are similar to the Lintner (1956) results.   
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future permanent earnings. The rate of change of share prices can then be shown to be 

equal to the rate of change of expected permanent earnings when it is assumed that the 

long-run discount rate is constant, thus implying a log linear relationship between 

dividend and price changes that leads to regression equation (11) in Marsh and Merton 

(1987): 

      1
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1 1 1
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t

t t t t

D D P D D
D P P P
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− − −
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� � � � � �

 .         (5) 

The Marsh and Merton (1987) model explains roughly half as much of the variation in 

aggregate dividends as does Lintner’s equation (3) above (see Lintner, 1956; Marsh and 

Merton, 1987; as well as the Results section). 

An alternative explanation of aggregate dividend behaviour is provided by 

Shiller’s (1983) trend-autoregressive model.4 The model implies that deviations in 

aggregate dividends follow a trend-autoregressive process whereby half of the deviation 

in dividends from trend disappears within three years, with the underlying trend being 

explained by ongoing (not anticipated) earnings growth. Changes in current dividends are 

therefore determined by a time trend as well as past deviations from trend in Shiller’s 

model, rather than anticipated earnings growth, but empirical tests indicate that the trend-

autoregressive model provides (at most) half as much explanatory power as the Marsh 

and Merton (1987) model (see Marsh and Merton, 1987).  

 

                                                 
4 For an extensive theoretical and empirical review of dividend policy and dividend behaviour at the 
individual firm level, see Allen, Bernardo and Welch (2000). 
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2.3 Spurious Regression       

Behavioural models of dividends share in common the use of lagged dividend 

terms to explain current dividend choices, a feature which implies that dividends are 

highly persistent. The recent literature on spurious regression points out that the use of 

persistent independent variables can lead to spurious regression results when the 

dependent variable is also at least partially persistent, since error terms in the regression 

equation inherit autocorrelation from the persistent dependent variable (Ferson, 

Sarkissian, and Simin, 2003a). This autocorrelation in the error term leads to biased 

standard error estimates and can therefore indicate a significant relationship when none 

exists, especially when data sets are mined for potentially significant explanatory 

variables (Ferson, Sarkissian, and Simin, 2003a; Foster, Smith and Whaley, 1997). 

Behavioural models of dividends are therefore likely candidates for spurious regression 

due to their strong persistence properties. 

Return predictability regressions that use the dividend yield as a predictor variable 

will also be likely candidates for spurious regression because the numerator of the 

independent variable, the dividend level, is highly persistent and will consequently make 

the dividend yield variable highly persistent as well. It is therefore likely that persistence 

might be responsible for the apparent return predictability of the dividend yield, rather 

than any property of dividends related to risk, return or mispricing, and in this situation 

other similarly persistent variables might also possess apparent return predictability, as 

will be illustrated below. 
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3. DIVIDEND YIELD RETURN PREDICTABILITY 

 
A starting point for examining whether dividend yield return predictability is a 

spurious result is to reproduce standard dividend yield return predictability results and 

compare them to the return predictability results that can be obtained using other 

persistent explanatory variables. The total return and capital return stock indices used in 

the study are the annual CRSP equally-weighted and value-weighted New York Stock 

Exchange Indices and the annual Standard and Poor Composite Index for the time period 

1927 to 1996.5 This facilitates comparison of the results with those obtained in recent 

studies (see Table 1), and the data sets are also easily accessible. The CRSP indices are 

obtained from John Campbell’s web page, and the Standard and Poor Composite Index 

data set is obtained from Global Financial Data (and is also available at Robert Shiller’s 

web page). All series are converted from nominal to real values by dividing by the 

Consumer Price Index (CPI) obtained from Robert Shiller’s web page. The dividend 

yield on the index at time t equals the level of real dividends during the twelve months 

preceding time t ( tD ) divided by the real stock index level at time t (Pt).  Panel A of 

Table 2 reproduces standard dividend yield return predictability results by regressing 

annual time t+1 rates of return against a constant as well as the annual time t dividend 

yield (see, e.g., Fama and French, 1988): 

1 1
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t t t t
t t

t t

P D P D
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.          (1) 

                                                 
5 Numerous dividend yield return predictability studies also use monthly or quarterly returns with 
overlapping dividend yield observations. The use of overlapping observations introduces excess dividend 
yield autocorrelation. This well-known overlapping observation problem is avoided with the use of annual 
data.    
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The Fama and French (1988) results and the results of other studies are fairly closely 

replicated in Panel A of Table 2, with the regression adjusted R2 ranging from 1.4% for 

the S&P Composite Index to 3.3% for the value-weighted NYSE Index, and 1.5% for the 

equally-weighted NYSE Index.6 

[Table 2 about here] 

The return predictability results documented in Panel A of Table 2 are often 

explained in terms of a theoretical relationship between current dividend yields and 

subsequent returns that is derived from the dividend discount model (see, e.g., Campbell 

and Shiller, 1988a and 1988b; Fama and French, 1988). It can be noted that this 

theoretical justification for return predictability relies upon a high current dividend level 

relative to the share index level predicting higher future returns, so substituting a constant 

level of dividends (c) for the dividend term ( tD ) in the numerator of the dividend yield 

variable ( tD / tP ) in regression equation (1) should reduce or eliminate return 

predictability in the following altered regression equation: 

1 1
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t t

t t
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r

P P
β β ε+ +

+ +

� �+ −≡ = + +� �
� �

,          (2) 

where c is the unconditional average of the dividend level during the sample period. The 

results for regression equation (2) are outlined in Panel B of Table 2. Surprizingly, the 

adjusted R2 actually rises to above 3.4% for the S&P Composite Index and 6.8% for the 

Equally-Weighted NYSE Index. The results for this dividend yield from a constant 

dividend variable ( / )tc P are therefore so strong that they provide a first indication that 

something “funny” is going on in previous dividend yield return predictability studies 

                                                 
6 Regressions are estimated using Ordinary Least Squares and t-statistics are estimated using Newey-West 
(1987) standard errors.  
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since, interestingly, the dividend yield from a constant dividend variable ( / )tc P  has 

higher explanatory power than does the standard dividend yield variable ( tD / tP ). This 

indicates that dividends are unlikely to be providing the explanatory power in return 

predictability regressions. 

To further emphasize the point, and to check for robustness against a reverse time 

trend that might be present in the dividend yield from a constant dividend variable, a 

completely smooth “pseudo-dividend” series ( tM ) is created that grows at a constant rate 

through time. The series (Mt) is referred to as a “pseudo-dividend” series because it 

grows at the same overall rate as the actual dividend series during the sample time period 

1927 to 1996, yet it is a completely non-stochastic series. A “pseudo-dividend” yield 

equal to the real pseudo-dividend (Mt) divided by the real stock index series (Pt) is then 

used as the independent variable in a return predictability regression (see Panel C of 

Table 2). The pseudo-dividend yield ratio has at least as high a level of power for 

explaining returns as the actual dividend yield, yet the numerator of the ratio is non-

stochastic and therefore cannot account for the correlation between the ratio and 

subsequent returns. This further indicates that it is very unlikely that the explanatory 

power of the dividend yield is due to correlation between dividends and subsequent price 

levels. 

The Table 2 results instead suggest that the observed empirical relationship 

between subsequent returns and the dividend yield might be spurious. To investigate this 

possibility, the persistence properties of the dividend, dividend yield, price index, 

dividend yield from a constant dividend, and return series are investigated in Table 3. 

Table 3 confirms that the real dividend series are highly persistent, as are the dividend 
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yield series. The dividend yield from a constant dividend series are even more persistent 

than the dividend yield series, thus indicating that persistence might have an important 

influence on return predictability, since predictability increases when more persistent 

variables are used as predictor variables in Table 2. Table 3 indicates that returns are 

sufficiently autocorrelated to suggest that regressing subsequent rates of return against 

highly persistent dividend yield explanatory variables could lead to spurious regression.7 

[Table 3 about here] 

To follow up this possibility, a simulation procedure is utilized that provides the 

cut-off R2 that would be obtained from a regression for which the dependent and 

independent variables are uncorrelated but have the same autocorrelation properties as 

the actual data, thus taking account of the potential for spurious regression (see also 

Foster, Smith and Whaley, 1997; Ferson, Sarkissian and Simin, 2003a). To obtain the 

cut-off R2 using simulation, the moments and the serial correlation properties of the 

regression variables are first estimated for each data series, as described in the Appendix. 

Uncorrelated dependent and independent variables with the same serial correlation 

properties and sample moments are then simulated for a time period equal to the sample 

length (1927 to 1996), and a regression is run on these simulated series. The process is 

repeated 1,000 times, and the adjusted R2s are recorded for each regression and ranked 

from lowest to highest. The 95th percentile adjusted R2 is then reported as the 5% cut-off 

R2 and is compared to the actual adjusted R2 obtained using the original data to assess the 

overall significance of the estimated regression relationship (see Foster, Smith and 

Whaley, 1997; Ferson, Sarkissian and Simin, 2003a).  

                                                 
7 Interestingly, Table 3 indicates the contemporaneous correlation between real dividend yields and real 
returns is actually negative. 
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The fifth column of Table 2 reports the cut-off R2 that is obtained using the 

simulation procedure so that it can be compared with the adjusted R2 reported in the 

fourth column of Table 2. For instance, the cut-off R2 reported for the equally-weighted 

NYSE Index in the fifth column of Panel A of Table 2 indicates that an R2 of 4.04% 

would be expected to be obtained by regressing subsequent returns against uncorrelated 

independent variables that are equally as persistent as the dividend yield variable 

( tD / tP ), whereas an adjusted R2 of only 1.54% is actually obtained. The adjusted R2 of 

1.54% does not exceed the critical cut-off R2 level of 4.04%, thus implying that the 

equally-weighted dividend yield return predictability regression adjusted R2 is 

insignificant (see also Foster, Smith and Whaley, 1997; Ferson, Sarkissian and Simin, 

2003a). The cut-off R2 levels reported in Table 2 therefore indicate that the dividend 

yield return predictability regression results are due to spurious regression since the 

reported adjusted R2 never exceeds the cut-off R2 (see the fifth column of Panel A of 

Table 2).  

The simulation procedure treats the variables in regression equation (1), 

1 1
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t t t t
t t
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+ +
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,         (1) 

as if they are independent. This independence assumption is not appropriate since returns 

on the left hand side of equation (1) and the dividend yield on the right hand side both 

come from the same underlying variables (the share index level P and the dividend level 

D). The simulation procedure is therefore modified to recognize the dependency of both 

the return and dividend yield variables on the share index and dividend levels (see the 

Appendix for details of the modified simulation procedure). Rather than simulating the 
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return series 1tr + as the dependent variable using the properties of the return series and 

simulating an uncorrelated dividend yield series ( /t tD P ) using the properties of the 

dividend yield series to calculate the cut-off R2, uncorrelated dividend ( tD ) and share 

index ( tP ) series are instead simulated using the estimated properties of these series. 

Dividend yield ( /t tD P ) and return ( 1 1 1( ) /t t t t tr P D P P+ + +≡ + − ) observations are then 

calculated using the simulated dividend and share index values, a regression is run using 

the constructed simulated variables, and the modified cut-off  R2 is then reported using 

the 95th percentile adjusted R2 obtained from the modified simulation regression 

procedure. 

The modified simulation procedure leads to a considerably higher simulated cut-

off R2 (see the modified cut-off R2 reported in the final column of Table 2). The modified 

cut-off R2 for the Equally-Weighted NYSE Index dividend yield regression rises to 

64.09% from 4.04%, for instance, and the modified cut-off R2 for the two value-weighted 

indices rise to above 75% from just over 4% (see the final column of Panel A of Table 2). 

The modified cut-off R2s reported in Table 2 therefore make it very clear-cut that 

dividend yield return predictability is a spurious result since the actual adjusted R2s 

obtained for the dividend yield regressions which range from 1.4% to 3.32% are an order 

of magnitude smaller than the modified cut-off R2 levels. The increase in the modified 

cut-off R2s that is apparent in Table 2 is caused primarily by the presence of the highly 

persistent price index common denominator on both sides of regression equation (1).  

The modified simulation procedure highlights the influence of the dividend yield 

and rates of return variables sharing a common denominator (the share price index 

level tP ), an effect that can create a spurious correlation even when all variables that 
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make up the numerators and the common denominator in a regression are independent 

(Pearson, 1897; Kronmal, 1993). This spurious correlation problem arises when all 

variables except for the constant in a “true” regression equation are divided by a common 

variable, often in an (incorrect) attempt by the researcher to control for a “common 

confounding influence”. Kronmal (1993, page 381), summarizing Friedlander (1980), 

outlines how this leads to a biased least squares estimate of the independent coefficient 

when the “true” regression constant is non-zero (see also Pearson, 1897; Tanner, 1949; 

Neyman, 1952; and Friedlander, 1980). More importantly, it can also lead to a significant 

estimate of the overall relationship between the dependent and independent regression 

variables even when all of the component variables making up the numerators and the 

denominator of the dependent and independent regression variables are uncorrelated. 

Intuitively, the common denominator on both sides of the regression model can introduce 

a correlation between the independent and the dependent variable if the regression 

constant is not divided by the same “control” variable. 

The Table 2 spurious regression return predictability results can also be related to 

the persistent regressor coefficient bias literature (see, e.g., Stambaugh, 1999; Lewellen, 

2004). Table 2 focuses on the significance of the overall relationship between dividend 

yields and subsequent returns to determine whether the observed relationship is spurious, 

and does not focus on whether the dividend yield coefficient t-statistics are biased, since 

the paper does not focus on the coefficients per se.8 Still, it can be useful to examine how 

the results relate to recommendations made in the return predictability literature to 

overcome the spurious regression and coefficient bias problems. 

                                                 
8 Ferson, Sarkissian and Simin (2003b) point out that the return predictability coefficient bias literature 
does not address the interaction between spurious regression and data mining.    
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To make this comparison, it can first be noted that if high dividend yields really do 

predict higher subsequent returns, then an increase in the dividend yield should also 

forecast an increase in subsequent returns. Ferson, Sarkissian and Simin (2003b) suggest 

that testing the relationship between returns and changes in predictor variables away from 

their trailing moving average can overcome the spurious regression problem, since 

detrending predictor variables will create a less persistent independent variable. 

Subsequent returns can therefore be regressed against changes in the dividend yield from 

its trailing moving average, with a twelve month moving average lag length being utilized 

(as recommended by Ferson, Sarkissian and Simin, 2003b). Lewellen (2004) implements a 

somewhat related regression model to test for return predictability, since he uses the 

natural logarithm of the dividend yield as the regression independent variable; the natural 

logarithm of the dividend yield can be interpreted as a change in the dividend yield away 

from a dividend yield of one. Campbell and Yogo (2003) also recommend detrending 

dividend yields when testing for return predictability.9 Subsequent real returns are 

therefore regressed against the detrended dividend yield using the regression model 

1 1
1 0 1 1

t t t
t t t

t

P D P
r X

P
β β ε+ +

+ +
+ −≡ = + + ,         (6) 

where 1tr + denotes the annual real index return at time t+1, tX denotes the stochastic 

detrended dividend yield calculated as 

       
1,...,

1 t jt
t

jt t j

DD
X

P Pττ
−

= −

= −  ,       (7) 

                                                 
9 Campbell and Yogo (2003) recommend subtracting from the dividend yield independent variable the 
innovations in the yield that are correlated with returns to obtain a less noisy independent variable, thus 
eliminating some of the noise and increasing the power of the test. 
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tD  is the level of real annual dividends during the twelve months preceding time t, and tP  

is the real stock index level at time t. While different numbers of lags could be used in the 

detrending, a 12-month lag is used, as recommended by Ferson, Sarkissian and Simin 

(2003b). 

Results for return predictability regression model (6) are reported in Table 4. 

Interestingly, the results imply that an increase in the dividend yield actually foreshadows 

lower, not higher, returns (although the overall relationship is clearly insignificant). 

Regression model (6) has not been tested before, but the Table 4 results can be compared 

to Lewellen’s (2004) finding that the return predictability regression coefficient of the 

natural logarithm of the dividend yield is actually negative within sub-periods for the 

monthly CRSP equally-weighted and value-weighted Indices when estimated using the 

Stambaugh (1999) bias-adjustment.10 The Table 4 results again reinforce the Table 2 

findings that the observed relationship between dividend yields and subsequent returns is 

spurious, and they also make it extremely unlikely that predictor coefficient bias 

adjustments would lead to a significant overall relationship, since bias adjustments do not 

normally reverse the sign of the coefficients. The Table 4 results, combined with the 

Table 2 results, further suggest that a spurious correlation effect influences the estimated 

relationship between dividend yields and subsequent returns, since the reversal of the 

dividend yield regression coefficient sign between Table 2 and Table 4 is consistent with 

                                                 
10 Lewellen (2004) reports very low adjusted R2s (less than .014) when regressing subsequent monthly 
returns against the natural logarithm of the dividend yield, and tends to find a significant dividend yield 
coefficient estimate only when imposing the assumption of unitary dividend yield serial correlation, an 
assumption that is clearly violated in Table 3 for annual data.   
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spurious correlation effects outlined in Kronmal (1993).11 The Table 4 results also cast 

severe doubt on the temporary mispricing explanation of return predictability, since the 

Table 4 results imply that an increase in mispricing would predict higher, not lower, 

subsequent returns.   

[Table 4 about here] 

  The results of Tables 2 and 4, taken together, imply that the spurious effect of 

regressing returns against a highly persistent explanatory variable such as the dividend 

yield is strongly reinforced by a spurious correlation effect. To further explore the origins 

of this spurious return predictability effect, models of dividend behaviour are also tested 

for spurious regression. 

 

4. DIVIDEND BEHAVIOUR RESULTS 

 
The persistence properties of dividend yields that contribute to spurious return 

predictability imply that dividend behaviour models are also likely to be subject to 

spurious regression, since the dependent and independent variables in the Linter (1956) 

and Marsh and Merton (1987) dividend behaviour models are all very persistent (see also 

Ferson, Sarkissian and Simin, 2003a). These dividend behaviour models are examined in 

Panels A and B of Table 5. The Table 5 results indicate that spurious regression plays an 

extremely important role in these standard dividend behaviour regression models which 

regress highly persistent dividends against lagged dividends and other terms. Panel A of 

                                                 
11 Kronmal (1993) reports how storks can be responsible for either a decrease or an increase in births, 
depending on how the dependent variable births is regressed against the independent variable storks in 
alternative incorrectly specified regression models that are subject to spurious correlation! 
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Table 5 reveals that spurious regression is very apparent in the results for the Marsh and 

Merton (1987) model 

       1
0 1 2 1

1 1 1

log log logt t t t t
t

t t t t

D D P D D
D P P P

ψ ψ ψ ε+
+

− − −

� � � � � �++ = + + +	 
 	 
 	 

� � � � � �

 .        (5) 

The results indicate that current log returns appear to be very important in explaining 

subsequent dividend changes, but the modified simulation cut-off R2s are much higher 

than the adjusted R2s in Panel A of Table 5, thus implying that the results are due to 

spurious regression.  

[Table 5 about here] 

The Lintner (1956) model of the time t dividend level choice, 

0 1 1 2 1t t t tD E Dθ θ θ ε− −= + + + ,          (4) 

is tested using the S&P composite index only due to earnings data availability (see also 

Arnott and Asness, 2003).12 Panel B of Table 4 reveals that the estimated independent 

variable coefficients for regression model (4) are very similar to those found in Lintner 

(1956), even though the data set is extended by four decades. The results imply that 

lagged earnings and (especially) lagged dividends explain almost all of the variation in 

the current dividend level. The R2 exceeds 90%, as in Lintner (1956), and slightly 

exceeds the cut-off R2, thus implying that the original Lintner model appears to 

somewhat survive the spurious regression problem. The very high cut-off R2 reported for 

the Lintner model in Panel B of Table 5 suggests that the spurious regression problem has 

an influence on the Lintner model regression, even if it is not solely responsible for the 

                                                 
12 The Standard and Poor’s Composite index earnings data set is obtained from Robert Shiller’s web site.  
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results, thus indicating the potential need for a reformulation of the original Lintner 

model. 

 A step towards a reformulation of the Lintner regression model is already 

provided in Lintner (1956), where the Lintner dividend behaviour theoretical model is 

originally presented in terms of changes in dividends, not the dividend level as in 

regression model (4) above (see equation (1) in Lintner, 1956, and see also Grullon and 

Michaely, 2002; Fama, 1974). Restating the Lintner dividend change model (Lintner 

(1956) equation (1)) in terms of information that is observable at time t leads to the 

following regression model:   

  1 0 1 1 2 1t t t t tD D E Dλ λ λ ε− − −− = + + +           (8) 

Results for the Lintner (1956) dividend change regression model (8) are presented in 

Panel C of Table 5 and are consistent with the results for the Lintner (1956) dividend 

level regression model (4) presented in Panel B. Having changes in dividends rather than 

the dividend level as the dependent variable in the Lintner regression model greatly 

reduces the adjusted R2 (from 91.8% down to 8.6%) as well as the cut-off R2 (from 

81.3% to 8%) in Panel C, so the adjusted R2 once again slightly exceeds the cut-off R2. 

The following section takes further steps to reformulate the Lintner dividend behaviour 

model entirely in terms of first differences on both sides of the regression equation, and 

also incorporates the “permanent earnings” innovation of Marsh and Merton (1987) into 

the reformulated dividend behaviour model. 
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5. AN ALTERNATIVE DIVIDEND BEHAVIOUR MODEL SPECIFICATION  

 
A source of persistence in the Lintner (1956) dividend level model (equation (4)) 

that is likely to have a very important effect on the model’s time series regression 

properties is a common time trend in both the dependent and independent regression 

variables: 

0 1 1 2 1t t t tD E Dθ θ θ ε− −= + + + ,           (4) 

A standard solution to this problem is a reformulation entirely in terms of first differences 

(see also equation (1) in Lintner, 1956). To derive the Lintner model in terms of first 

differences, first note that equation (4) also implies: 

1 0 1 2 2 2 1t t t tD E Dθ θ θ ε− − − −= + + + .            (9) 

Equation (4) minus equation (9) leads to a reformulated first-difference Lintner model  

1 1 1 2 2 1 2 1( ) ( ) ( )t t t t t t t tD D E E D Dθ θ ε ε− − − − − −− = − + − + − .       (10) 

A second potential improvement to the Lintner model follows from the Lintner 

(1956) argument that dividends would not be adjusted to changes in earnings that are 

only temporary. This led Marsh and Merton (1987) to introduce the concept of permanent 

earnings and to argue that dividends are determined in relation to permanent earnings. 

They further argue that, in an efficient market, the current share price index level is equal 

to the present value of all future permanent earnings. By assuming that the long-run 

discount rate is relatively constant, then “permanent earnings” divided by the long-run 

discount rate is proportionate to the current share index level, so by adjusting dividends 

through time in reaction to permanent earnings then managers are adjusting dividends to 

the share index level. The Marsh and Merton permanent earnings innovation can 
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therefore be directly introduced into the Lintner model by substituting the price index 

level P in for earnings E in the reformulated Lintner first-difference regression model 

(10):  

1 1 1 2 2 1 2 1( ) ( ) ( )t t t t t t t tD D P P D Dθ θ ε ε− − − − − −− = − + − + − .       (11) 

Results for the reformulated Lintner first-difference regression model (11) are reported in 

Table 6.13, 14 A notable result from the table is a more reasonable adjusted R2 for the 

Lintner first-difference model (no longer 90%) which now greatly exceeds the cut-off R2, 

thus implying a lessening of the influence of spurious regression in the re-specified 

model. The results imply that changes in the aggregate level of dividends are explained 

by lagged share price index innovations and, in the case of the Equal Weighted NYSE 

index, lagged dividend innovations. The results are therefore consistent with the 

predictions of Marsh and Merton (1987). The right side of Table 6 also reproduces the 

results using detrended real data to ensure that the results are not sensitive to any 

remaining time trends in the first difference regression variables (the detrending follows 

Marsh and Merton, 1986). The results are very similar, with innovations in detrended 

prices explaining subsequent changes in detrended dividends, so the Lintner dividend 

first-difference regression model (11) appears to provide a correctly specified dividend 

behaviour model. 

[Table 6 about here] 

 

                                                 
13 Note that the reformulated Lintner first difference regression model (11) nests the constant growth 
dividend model P = kE/(r-g), where k is the (constant) dividend payout ratio from earnings, r is the 
constant discount rate, and g is the constant growth rate. It can also be noted that the results in Table 6 are 
insensitive to the inclusion of an intercept term in regression model (11); results not reported.   
14 The error term in equation (9), 1t tε ε −− , is accommodated using a Heteroskedasticity and  
Autocorrelation Consistent Covariance estimation procedure within Generalized Method of Moments. 



 26 

6. CONCLUSION 

 
It is now known that spurious regression is a very serious problem when highly 

persistent variables are used in a time series regression model to predict or explain 

dependent variables that are at least partially persistent. The spurious regression problem 

is compounded when the dependent and independent variables in a regression equation 

are ratios constructed from common component variables. Both of these problems are 

present in dividend yield return predictability and dividend behaviour regression models, 

thus explaining why standard dividend return predictability and dividend behaviour 

regression results are spurious. Return predictability of the dividend yield is shown to be 

due to the persistence properties of the dividend yield as well as a spurious correlation 

that results from regression variables being constructed from common component 

variables, rather than (as widely argued) any property of the dividend level that is related 

to risk, return or mispricing. The paper’s results therefore strongly reinforce the Kronmal 

(1993) message that extreme care should be taken when using ratios in regression 

analysis, especially in time series regressions when highly persistent ratios are used as 

predictor or explanatory variables. 

Standard dividend behaviour models are also strongly affected by the spurious 

regression problem since the dependent and independent variables in these models are all 

very persistent. A reformulation of the Lintner (1956) dividend model in terms of first 

differences provides a dividend behaviour explanatory model that is far less subject to 

spurious regression, and also directly incorporates the Marsh and Merton (1987) 

permanent earnings explanation of dividend behaviour. Results for the reformulated 

Lintner first difference dividend model imply that changes in the aggregate level of 
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dividends are explained by lagged share price innovations as well as lagged dividend 

innovations, as predicted by Marsh and Merton (1987).  
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APPENDIX 

 
A1 Cut-off R2 Simulation Procedure 

 The cut-off R2 simulation procedure provides the cut-off R2 that is obtained by 

regressing simulated dependent and independent variables that are uncorrelated but have 

the same autocorrelation properties as the actual dependent and independent variable data 

series. The simulated independent variable series tX  is generated as 

1t X X t tX X eα ρ −= + +    for t = 2, 3,…, n ,                  (A1) 

where αx is the intercept and ρx is the first order autocorrelation coefficient. The 

unconditional mean of the independent variable series ( Xµ ) is 

1
X

X
X

αµ
ρ

=
−

 

and the variance 2
Xσ is 

2
2

21
e

X
X

σσ
ρ

=
−

. 

The parameters that calibrate the simulation, Xµ , 2
Xσ  and ρx, are taken from the actual 

data. The simulation is started at the unconditional mean Xµ  and the error term is 

generated from a normal with mean zero and variance 2
Xσ ( 21 xρ− ). 

Similarly, the uncorrelated dependent variable series is generated as 

1t r r t tr r eα ρ −= + +    for t = 2, 3,…, n                        A(2) 

with 

1
r

r
r

αµ
ρ

=
−

 

and  
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2
2

21
e

r
r

σσ
ρ

=
−

, 

where the parameters rµ , 2
rσ  and rρ  are taken from the actual data. The dependent 

variable simulation is started at the unconditional mean rµ  and the error term for process 

A(2) is generated independently of process A(1) from a normal with mean zero and 

variance 2
rσ ( 21 rρ− ). 

The simulated dependent and independent variable series are stored, and an 

ordinary least squares regression is run. The process is repeated 1,000 times. The adjusted 

R2s are recorded for each regression and ranked from lowest to highest. The 95th 

percentile adjusted R2 is then reported as the 5% cut-off R2. 

 

A2 Modified Cut-off R2 Simulation Procedure 

To obtain the modified cut-off R2, the cut-off R2 simulation procedure is modified 

to recognize the dependency of both returns ( 1tr + ) and the dividend yield variable 

( /t t tX D P≡ ) on the same underlying component variables (the share index level P and 

the dividend level D) in regression model  

1 1
1 0 1 1

t t t t
t t

t t

P D P D
r

P P
β β ε+ +

+ +

� �+ −≡ = + +� �
� �

 .         (1) 

      The modified cut-off R2 simulation procedure simulates the dividend series 

( tD ) and price index series ( tP ) independently prior to constructing the dependent and 

independent variable return and dividend yield series. The simulated dividend series tD  is 

generated as 
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 1t D D t tD D eα ρ −= + +   for t = 2, 3,…, n ,                       (A3) 

with  

1
D

D
D

αµ
ρ

=
−

 

and 

2
2

21
e

D
D

σσ
ρ

=
−

, 

where the parameters Dµ , 2
Dσ  and Dρ  are taken from the actual dividend data. The 

simulation is started at the unconditional mean of the dividend series Dµ  and the error 

term is generated from a normal with mean zero and variance 2
Dσ ( 21 Dρ− ). 

The uncorrelated price index series is generated as 

 1t P P t tP P eα ρ −= + +  for t = 2, 3,…, n             (A4) 

with 

1
P

P
P

αµ
ρ

=
−

 

and  

2
2

21
e

P
P

σσ
ρ

=
−

, 

where the parameters Pµ , 2
Pσ  and Pρ are taken from the actual price index series. The 

simulation is started at the unconditional mean Pµ  and the error term for process A(4) is 

generated independently of process A(3) from a normal with mean zero and variance 

2
Pσ ( 21 Pρ− ). 
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 A dividend yield series ( /t t tX D P≡ ) is subsequently created from the simulated 

dividend series tD  and simulated price index series tP : 

t
t

t

D
X

P
� �

= � �
� �

   for t = 1,…, n . 

A return series ( 1 1 1( ) /t t t t tr P D P P+ + +≡ + − ) is created from the same simulated dividend 

series tD  and simulated price index series tP :  

1 1
1

t t t
t

t

P D P
r

P
+ +

+
+ −=    for t = 1, 2,…, n-1 . 

The dividend yield series ( tX ) and the return series ( 1tr + ) are then stored. An ordinary 

least squares regression is run with the stored dividend yield series ( tX ) as the 

independent variable, and the stored return series ( 1tr + ) as the dependent variable. The 

process is repeated 1,000 times, with the adjusted R2s being recorded for each regression 

and ranked from lowest to highest. The 95th percentile adjusted R2 is then reported as the 

5% modified cut-off R2. 



Table 1 
Model specifications used in 10 previous empirical studies of the dividend yield 

This table presents model specifications used in a number of recent empirical studies on the dividend yield. Under I/P/S, I refers to a well know index of 
stocks (e.g. NYSE or S&P index), P refers to a stock portfolio based on financial characteristics of the data (e.g. size or industry), and S refers to individual 
stock data. For M/Q/A, M refers to monthly data, Q refers to quarterly data and A refers to annual data. For variables used in the studies, 1 denotes lagged 
return, 2 denotes credit spread between the yields of investment grade and below investment grade bonds, 3 denotes yield on a short-term T-Bill, 4 denotes 
term spread between the yields on long-term government bonds and the short term T-bill, 5 denotes yield on a long-term bond, 6 denotes yield spread 
between the yields on commercial paper and the short-term T-bill, 7 denotes January Dummy,  8 denotes book-to-market ratio, and 9 denotes systematic 
risk. ‘+’ (‘-‘) is used to signify a positive (negative) but insignificant relation, and  ‘++’ (‘--‘) a significant positive (negative) relation. Note that some 
studies only report R2 while others report adjusted R2. 

Study Litzenberger & 
Ramaswamy 

(1979) 

Fama & 
French (1988) 

Harvey  
(1989) 

Ferson & 
Harvey  
(1991) 

Nelson & Kim 
(1993) 

Nelson & 
Kim   

(1993) 

Whitelaw 
(1994) 

Kothari & 
Shanken 
(1997) 

Pontiff & 
Schall 
(1998) 

Bossaerts & 
Hillion 
(1999) 

I/P/S S P I I I I I I I I 

Sample period 36-77 27-86 41-87 64-86 72-86 72-86 53-89 26-91 26-94 56-95 

Freq. of Data 
(M/Q/A) 

M M/Q/A M M A A M M M M 

Dep Var. excess        
return 

nominal and 
real returns 

excess     
return 

Excess     
return 

Real          
return 

excess  
return 

Excess      
return 

Index         
return 

Index   
return 

Excess  
return 

Dividend Yield  ++ ++ ++ ++ ++ + ++ ++ - ++ 

1   + +       

2   ++ +   ++  ++  

3    --   --  - -- 

4   ++ +     +  
5          ++ 

6       -    

7   + ++      + 

8         +  

9 +          

R2 or adj. R2 NA 0.00-0.22 0.075 0.14 0.039 0.016 0.082 0.075 0.02 0.074 
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Table 2   

Regressions of Annual Real Index Returns on Three Predictors 
 

This table presents OLS regressions of annual real index return on three predictors: 

1 0 1 1t T tr Xβ β ε+ += + +  
where 1tr + denotes annual real index return at time t+1 on the annual CRSP equally-weighted and value-weighted New 
York Stock Exchange indices and the annual Standard and Poor Composite Index for the time period 1927 to 1996. The 
CRSP indices are obtained from John Campbell’s web page, and the Standard and Poor Composite Index data set is 
obtained from Global Financial Data (and is also available at Robert Shiller’s web page). tX variously denotes the time t 

real dividend yield ( /t tD P ), the dividend yield from a constant dividend ( / tc P ), or the real pseudo dividend yield 
( /t tM P ). tD is the level of real annual dividends during the twelve months preceding time t, tP  is the real stock index 
level at time t, c is the unconditional average of the dividend level over the sample period, and the pseudo-dividend 
series ( tM ) is a non-stochastic series growing at a constant growth rate through time and is the sum of real quarterly 
pseudo-dividends in the past year.  Regressions are estimated by OLS and figures in parentheses are t-statistics using 
Newey-West (1987) standard errors. *** denotes significance at the 1% level, ** denotes significance at the 5% level 
and * denotes significance at the 10% level. The fifth column of the table reports the cut-off R2 that is obtained using a 
simulation procedure where dependent and independent variables are uncorrelated but have the same autocorrelation 
properties as the actual data. The final column of the table shows the modified cut-off R2 which recognizes the 
dependency of both the return and dividend yield variables on the share index and dividend levels.  
 

   Panel A: 1 0 1 1( / )t t t tr D Pβ β ε+ += + +     

Stock Index Intercept 0β  Slope 1β  Adjusted R2 Cut-off R2 Modified Cut-off R2 

Equally-Weighted NYSE Index -0.021 3.849 1.54% 4.04% 64.09% 

 (-0.156) (1.304)    

Value-Weighted NYSE Index -0.059 3.396 3.32% 4.47% 79.30% 

 (-0.875)      (2.041)**    

S&P Composite Index -0.01 2.288 1.40% 4.13% 76.18% 

 (-0.167) (1.513)    

  Panel B: 1 0 1 1( / )t t tr c Pβ β ε+ += + +     

Stock Index Intercept 0β  Slope 1β  Adjusted R2 Cut-off R2 Modified Cut-off R2 

Equally-Weighted NYSE Index 0.073 0.538 6.82% 4.88% 65.46% 

      (2.632)** (1.618)    

Value-Weighted NYSE Index 0.003 1.675 4.02% 4.38% 96.33% 

 (0.078)     (2.309)**    

S&P Composite Index 0.011 1.541 3.43% 3.92% 94.34% 

 (0.296)     (2.096)**    

  Panel C:  1 0 1 1( / )t t t tr M Pβ β ε+ += + +     

Stock Index Intercept 0β  Slope 1β  Adjusted R2 Cut-off R2 Modified Cut-off R2 

Equally-Weighted NYSE Index -0.132 5.301 20.14% 5.04% 62.34% 

       (-2.403)**       (4.076)***    

Value-Weighted NYSE Index -0.007 1.318 3.60% 4.06% 89.86% 

 (-0.122)   (1.831)*    

S&P Composite Index 0.011 1.194 2.14% 4.34% 89.69% 

 (0.188) (1.529)    
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Table 3 
 Descriptive Statistics 

Panel A presents summary statistics on the real annual dividend ( tD ), real dividend yield ( /t tD P ), real index return ( tr ), real price index ( tP ) and the dividend yield from a constant 
dividend ( / tc P ) on the annual CRSP equally-weighted and value-weighted New York Stock Exchange indices and the annual Standard and Poor Composite Index for the time period 
1927 to 1996. tD is the level of real annual dividends during the twelve months preceding time t, tP  is the real stock index level at time t, tr denotes annual real index return at time t, 
and c is the unconditional average of the dividend level over the sample period. Panel B reports autocorrelations of the variables up to 6 lags, and correlations among the variables are 
presented in Panel C.  

   Equally-Weighted 
NYSE Index 

     Value-Weighted 
NYSE Index 

     S&P Composite               
Index 

  

 
tD  /t tD P  tr  tP  / tc P   tD  /t tD P  tr  tP  / tc P   tD  /t tD P  tr  tP  / tc P  

        Panel A: Descriptive Statistics          

Mean 0.888 0.04 0.135 24.997 0.109  0.189 0.043 0.089 4.983 0.051  0.217 0.044 0.091 5.741 0.051 
Median 0.693 0.036 0.157 19.994 0.044  0.192 0.041 0.117 4.598 0.041  0.228 0.041 0.114 5.214 0.042 

Maximum 2.506 0.072 1.387 88.451 0.885  0.297 0.089 0.571 12.852 0.133  0.32 0.097 0.528 15.942 0.122 
Minimum 0.041 0.016 -0.474 1.004 0.010  0.078 0.022 -0.386 1.426 0.015  0.113 0.02 -0.356 1.778 0.014 

Std. Dev. 0.683 0.013 0.299 21.595 0.156  0.059 0.013 0.204 2.579 0.028  0.061 0.015 0.199 3.08 0.029 

        Panel B: Autocorrelation          
1 0.94 0.578 0.048 0.897 0.854  0.94 0.674 -0.011 0.868 0.881  0.926 0.699 0.007 0.857 0.893 

2 0.875 0.204 -0.18 0.818 0.656  0.87 0.397 -0.211 0.77 0.752  0.843 0.446 -0.227 0.75 0.784 
3 0.814 0.088 -0.109 0.774 0.517  0.806 0.299 -0.062 0.736 0.669  0.788 0.365 0.033 0.72 0.716 

4 0.77 0.12 -0.205 0.702 0.422  0.766 0.257 -0.081 0.676 0.614  0.748 0.282 -0.084 0.655 0.657 
5 0.737 0.156 -0.004 0.628 0.354  0.731 0.264 0.039 0.585 0.603  0.709 0.247 -0.015 0.56 0.632 
6 0.698 0.198 -0.065 0.573 0.304  0.688 0.258 0.005 0.496 0.571  0.655 0.256 0.016 0.48 0.593 

        Panel C: Correlations          

tD  1      1      1     
/t tD P  -0.255 1     -0.517 1     -0.561 1    

tr  -0.098 -0.508 1    -0.053 -0.429 1    -0.104 -0.41 1   
tP  0.961 -0.414 -0.018 1   0.875 -0.778 0.135 1   0.872 -0.796 0.138 1  
/ tc P  -0.584 0.322 -0.102 -0.555 1  -0.853 0.826 -0.193 -0.873 1  -0.869 0.846 -0.182 -0.87 1 



 
Table 4 

Regressions of Annual Real Index Returns on Stochastic Detrended Lagged 
Dividend Yield Variables 

 
This table presents OLS regressions of annual real index return on a stochastic detrended dividend yield 
variable, as recommended by Ferson et al (2003b): 

1 0 1 1t T tr Xβ β ε+ += + +  
where 1tr + denotes annual real index return at time t+1 on the annual CRSP equally-weighted and value-
weighted New York Stock Exchange indices and the annual Standard and Poor Composite Index for the time 
period 1927 to 1996. The CRSP indices are obtained from John Campbell’s web page, and the Standard and 
Poor Composite Index data set is obtained from Global Financial Data (and is also available at Robert Shiller’s 
web page). tX denotes the stochastic detrended dividend yield and is calculated as: 

1,...,

1 t jt
t

jt t j

DD
X

P Pττ
−

= −

= −   

where tD is the level of real annual dividends during the twelve months preceding time t and tP  is the real 
stock index level at time t. While different numbers of lags could be used in the detrending, a 12-month lag is 
used, as recommended by Ferson et al (2003b).  Regressions are estimated by OLS and figures in parentheses 
are t-statistics using Newey-West (1987) standard errors. *** denotes significance at the 1% level, ** denotes 
significance at the 5% level and * denotes significance at the 10% level. The final column of the table reports 
the modified cut-off R2 which recognizes the dependency of both the return and dividend yield variables on the 
share index and dividend levels.  

 

Stock Index Intercept 0β  Slope 1β  Adjusted R2 Modified Cut-off R2 

     
Equally-Weighted NYSE Index 0.131 -5.602 3.92% 41.77% 

         (4.358)*** (-1.158)   

Value-Weighted NYSE Index 0.084 -2.259 -0.10% 42.23% 

         (4.249)*** (-0.937)   

S&P Composite Index 0.086 -.2.664 0.87% 40.74% 

         (4.408)*** (-1.384)   
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Table 5 
Results for the Marsh and Merton (1987) and Lintner (1956) Dividend Models  

 
This table presents regression results for the Marsh and Merton (1987) and Lintner (1956) dividend behaviour models. The 
Marsh and Merton (1987)  model is tested using the annual CRSP equally-weighted and value-weighted New York Stock 
Exchange indices and the annual Standard and Poor Composite Index for the time period 1927 to 1996, and the Lintner (1956) 
models are tested using  the annual Standard and Poor Composite Index for the time period 1927 to 1996.  Panel A of the table 
reports results for the Marsh and Merton (1987) model  

1 1 0 1 1 2 1 1log( / ) / [( ) / ] log( / )t t t t t t t t t tD D D P P D P D Pψ ψ ψ ε+ − − − ++ = + + + +  
where tD is the level of real annual dividends during the twelve months preceding time t and tP  is the real stock index level at 
time t. Panel B reports results for Lintner (1956) model 1  

0 1 1 2 1t t t tD E Dθ θ θ ε− −= + + + ,  

where tE  denotes the real level of earnings during the twelve months preceding time t. The model is tested using the S&P 
composite index only due to earnings data availability.  Panel C reports results for Lintner (1956) model 2  

1 0 1 1 2 1t t t t tD D E Dλ λ λ ε− − −− = + + + . 

The model is tested using the S&P composite index only due to earnings data availability.  Regressions are estimated by OLS 
and figures in parentheses are t-statistics using Newey-West (1987) standard errors. *** denotes significance at the 1% level, ** 
denotes significance at the 5% level and * denotes significance at the 10% level. While the cut-off R2 is reported in Panels B and 
C, Panel A shows the modified cut-off R2 which recognizes the dependency of the dependant and independent variables in the 
equation. 
   

 Panel A: Marsh and Merton (1987) Model   

 1 1 0 1 1 2 1 1log( / ) / [( ) / ] log( / )t t t t t t t t t tD D D P P D P D Pψ ψ ψ ε+ − − − ++ = + + + +      

Stock Index 0ψ  1ψ  2ψ  Adjusted R2 Modified Cut-off R2 

Equally-Weighted NYSE Index -0.311 0.493 -0.110 42.13% 59.61% 

 (-0.979)        (3.494)*** (-1.152)   

Value-Weighted NYSE Index -0.046 0.321 -0.025 28.88% 42.17% 

 (-0.278)        (2.799)*** (-0.507)   

S&P Composite Index -0.037 0.357 -0.022 32.44% 43.31% 

 (-0.234)        (3.193)*** (-0.461)   

 Panel B: Lintner (1956) Model 1    

 0 1 1 2 1t t t tD E Dθ θ θ ε− −= + + +      

Stock Index 0θ  1θ  2θ  Adjusted R2 Cut-off R2 

S&P Composite Index 0.019 0.073 0.788 91.79% 81.25% 

        (2.053)**   (1.816)*        (7.776)***   

  Panel C: Lintner (1956) Model 2    

  1 0 1 1 2 1t t t t tD D E Dλ λ λ ε− − −− = + + +     

Stock Index 0λ  1λ  2λ  Adjusted R2 Cut-off R2 

S&P Composite Index 0.019 0.073 -0.212 8.64% 7.98% 

      (2.053)**    (1.816)*        (-2.091)**   
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Table 6 

Results on a Reformulated Lintner (1956) Dividend First-Difference Model  
 
This table presents results for the reformulated Lintner (1956) dividend first-difference regression model on 
the annual CRSP equally-weighted and value-weighted New York Stock Exchange indices and the annual 
Standard and Poor Composite Index for the time period 1927 to 1996:  

1 1 1 2 2 1 2 1( ) ( ) ( )t t t t t t t tD D P P D Dθ θ ε ε− − − − − −− = − + − + −   
where tD is the level of real annual dividends during the twelve months preceding time t and tP  is the real 
stock index level at time t. Both real and detrended real data are examined. Regressions are estimated by 
OLS and t-statistics are estimated using Newey-West (1987) standard errors. In the simulation procedure, 
the error term ( 1t tε ε −− ) is accommodated using a Heteroskedasticity and Autocorrelation Consistent 
Covariance estimation procedure within Generalized Method of Moments. *** denotes significance at the 
1% level, ** denotes significance at the 5% level and * denotes significance at the 10% level. The cut-off 
R2 is obtained using a simulation procedure where dependent and independent variables are uncorrelated 
but have the same autocorrelation properties as the actual data. Note that the modified cut-off R2 is not 
required due to the properties of the dependant and independent variables in the model.  
 

 Real Data   Detrended Real Data 
 Coeff. t-stat  Coeff. t-stat 
      
Equally-Weighted NYSE Index      
      

( 1 2t tP P− −− ) 0.004 2.794***  0.012 2.326** 

( 1 2t tD D− −− ) 0.406 2.769***  0.059 0.531 
Adj. R2 (%) 16.65%   26.30%  
Cut-off R2 (%) 2.48%   6.71%  
      
Value-Weighted NYSE Index      
      

( 1 2t tP P− −− ) 0.006 2.334**  0.015 3.108*** 

( 1 2t tD D− −− ) 0.144 1.257  0.111 0.803 
Adj. R2 (%) 11.52%   30.71%  
Cut-off R2 (%) 5.89%   6.06%  
      
S&P Composite Index      
      

( 1 2t tP P− −− ) 0.008 3.101***  0.021 3.709*** 

( 1 2t tD D− −− ) 0.150 1.012  0.093 0.638 
Adj. R2 (%) 22.49%   40.16%  
Cut-off R2 (%) 5.02%   6.81%  

 
 
 

 


