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1. INTRODUCTION:  

One of the most recurring themes in empirical financial research is studying the effect of 

Derivatives trading on the underlying asset.  Special interest is devoted to studying 

whether Derivatives markets stabilize or destabilize the underlying markets.  Many 

theories have been advanced on how the introduction of Derivatives market might impact 

the volatility of an underlying asset.  The traditional view against the Derivatives markets 

is that, by encouraging or facilitating speculation, they give rise to price instability and 

thus amplify the spot volatility.  This is called the Destabilization hypothesis.  This has 

led to call for greater regulation to minimize any detrimental effect.  An alternative 

explanation for the rise in volatility is that Derivatives markets provide an additional 

route by which information can be transmitted, and therefore, increase in spot volatility 

may simply be a consequence of the more frequent arrival, and more rapid processing of 

information.  Thus Derivatives trading may be fully consistent with efficient functioning 

of the markets.  This topic has been the focus of attention for both academicians and 

practitioners alike.  In empirical terms, practitioners and regulators are both concerned 

with different experiences of how the introduction of trading new financial instruments 

are associated with price volatility.   

 

Thus despite the long debate about the issue of stock market volatility, an agreement 

seems to be difficult to reach, when it concerns the identification of the sources of stock 

market volatility, including futures transactions.  An increase in volatility of the stock 

market can simply reflect a change in the underlying economic context, and thus it must 

not be considered, ex-ante, a market-destabilizing factor.  Stock index futures, because of 
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operational and institutional properties, are traditionally more volatile than spot markets.   

The close relationship between the two markets induces the possibility of transferring 

volatility from futures markets to the underlying spot markets.  There are numerous 

studies that have approached the effect of the introduction of Index Futures trading from 

an empirical perspective.  Majority of the studies compare the volatility of the spot index 

or individual component stocks in an index before and after the introduction of the 

futures contract using different methodologies ranging from simple comparison of 

variances, to linear regression to more complex GARCH models with different 

underlying assumptions and parameters in the models.   

 

Authors who report that inception of futures trading increases spot volatility are 

Figlewsky (1981), Harris (1989), Brorsen et al (1991), Lee and Ohk (1992), Kumara 

et.al., (1992) Antoniou and Holmes (1995) among others who have studied the issue in 

highly developed markets such as the United States, United Kingdom, and Japan.  These 

authors support the Destabilization hypothesis based on the observation that futures 

markets are likely to attract uninformed traders because of their high degree of leverage.  

Authors who report decrease or no change in the spot market volatility after the start of 

index futures trading are Edwards (1988), Becketti and Roberts (1990), Hodgson and 

Nicholls (1991), Darrat et.al., (1995), Butterworth (2000) among others.  These papers 

can’t reject the non-Destabilization hypothesis and support the view that futures markets 

play an important role of price discovery, and have a beneficial effect on the underlying 

cash markets. 
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Most of these studies examined the impact of introduction of index futures in one market 

and thus were unable to compare across markets.  Gulen and Mayhew (2000) examine 

stock market volatility before and after the introduction of index futures trading in 

twenty-five countries, using various GARCH models augmented with either additive or 

multiplicative dummy.  Their statistical model takes care of asynchronous data, 

conditional heteroskedasticity, asymmetric volatility responses, and the joint dynamics of 

each country’s index with the world market portfolio.  They found that futures trading is 

related to an increase in conditional volatility in the U.S. and Japan, but in nearly every 

other country, no significant effect could be found.   

 

In June 2000, Stock Index Futures contracts were introduced in India when both the 

Bombay and National stock exchanges started the BSE Sensex and NSE Nifty futures 

transactions. As mentioned before, the impact of the introduction of Stock Index Futures 

on the underlying spot market is a well-documented issue in the context of well-

developed international markets like USA, UK or Japan. However to what extent their 

studies are applicable to less-developed markets remains unclear.   There is a significant 

lack of empirical studies on this subject with respect to Indian market.  The only studies 

so far with reference to Indian market are those of Thenmozhi (2002), Gupta and 

Muneesh Kumar (2002) who report a reduction in the volatility of spot index after the 

inception of Index Futures trading. These studies applied a simple Variance Ratio test and 

Ordinary Least Squares Multiple Regression technique to examine the shift in volatility 

of NSE Nifty and thus neglect the possible autocorrelation in returns and inherent ‘time-
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varying’ nature of volatility.  Further, the Regression technique does not allow one to 

explicitly capture the connection between information and volatility.    

The study in this article improves the earlier studies in five aspects, first two are in 

general context and the others are in Indian context.  First, the paper examines closely 

whether there is any shift in the NSE Nifty volatility in the period under investigation 

through a change-point analysis and then confirms that indeed a change has occurred 

around the date of introduction of Index Futures trading.  To the authors’ knowledge no 

other study has thus objectively validated the event-study methodology, typically applied 

in studying problems of the kind discussed in this paper. Second, marginal volatilities of 

before and after series are compared apart from the well-documented comparison of 

conditional volatility of a series before and after occurrence of an event. The volatility 

comparison through GARCH model gives whether the conditional volatility of the series 

(which is same as that of residuals) has changed or not and does not comment on the 

volatility of the underlying series as such. Third, this study applies the GARCH model, 

which inherently incorporates endogenous information in the expression of conditional 

volatility as discussed in Ross (1989), apart from effectively controlling the temporal 

dependency phenomena.  Following Antoniou & Holmes (1995), the GARCH model is 

augmented with individual dummies.  The use of individual dummies is important as one 

can measure whether there is a change in the speed and persistence with which volatility 

shocks evolve after the futures trading1. Fourth, this paper deviates from the existing 

                                                 
1 Though in the standard GARCH literature, persistence is understood as a condition like 111 <+ βα  for 
GARCH (1,1) (see Bollerslev (1986) for instance), Antoniou & Holmes use the term persistence to indicate 
the effect of past conditional variance on the present conditional variance.  In rest of the paper the term 
persistence refers in this later sense, as in Antoniou & Holmes. 
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literature on the studies of the Indian markets in using Nifty Junior index as a proxy for 

market-wide movements given that it contributes a mere 6% on average, of market 

capitalization.  Instead, MSCI World Index has been used to control for market-wide 

movements.  Fifth, the entire test procedure is implemented on Nifty Junior, which does 

not have corresponding futures contract and thus may be treated as a control index.  This 

strengthens the analysis of impact of Index Futures trading on Nifty as its results differ 

from that of Nifty Junior.  

 

The study reports that while there is no change in the mean returns and marginal 

volatility there is a substantial change in the dynamics by which the conditional variance 

evolves.  Specifically, the results suggest that futures trading improves the quality and 

speed of information flow to spot market and this trend is not evident in the control 

index, NSE Nifty Junior.  The remainder of this paper proceeds as follows: the next 

section presents the methodology used.   Next the data and the empirical results are 

presented.   The final section provides a summary and conclusions.  

 

2. METHODOLOGY 

Any test applied to measure the effects of an intervention, such as the introduction of 

futures trading, requires the knowledge of when the intervention took place, followed by 

an analysis of the behavior of the spot market before and after the event.   The classic 

Event-study methodology is applied to study the impact of introduction of index futures 

trading on the volatility of NSE Nifty Index.  However before blindly initiating the event-

study methodology, one has to first check whether there is indeed any change in the 
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series under study, around the event date without using its prior knowledge, through a 

Change-Point Analysis.  For this purpose an informal descriptive statistical technique 

called CUSUM (Cumulative Sum) chart is employed, which has been widely used in 

Statistical Process Control literature for change-point detection, (vide., Ch 7 of 

Montgomery, 1991) and as well as a formal Bayesian analysis. If there is any shift in the 

spot volatility because of Futures introduction then the date obtained from CUSUM plot 

or the Bayesian analysis should approximately coincide with that of the actual starting 

date of Futures trading.  

 

2.1. CUSUM Chart 

Taylor (2000) suggested the use of Cumulative Sum plots (CUSUM) to detect the 

possible change point in time series data.  CUSUM charts are constructed by calculating 

and plotting a cumulative sum based of the data as follows.  If X1, X2, …, Xn represent 

the n consecutive observations of a time series, the cumulative sums S0, S1, …, Sn are 

calculated as follows: 

1. First calculate the average 
n

XXX
X n+++

=
...21

__

 

2. Start the cumulative sum at zero by setting S0 = 0. 

3. Calculate the other cumulative sums by adding the difference between current 

value and the average to the previous sum,  for  i=1,2,..n. )(
__

1 XXSS iii −+= −

   

A segment of the CUSUM chart with an upward slope indicates a period where the 

values tend to be above the overall average.  Likewise a segment with a downward slope 
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indicates a period of time where the values tend to be below the overall average.  Thus a 

sudden change in direction of the CUSUM indicates a sudden shift or change in the 

average.  Fig 1 shows the CUSUM chart with NSE Nifty daily squared returns, as a proxy 

for volatility, from June 1999 to June 2001.   As is evident from the CUSUM chart, the 

NSE Nifty squared returns have taken a sudden turn on 6th June 2000.  Incidentally, BSE 

Sensex Futures started on 5th June 2000 and NSE Nifty Futures started on 12th June 2000.  

So around the date of introduction of Futures there has been a sudden turn in NSE Nifty 

daily squared returns and needs further examination to conclusive evidence. 

 

2.2. Bayesian Change Point Analysis 

From the CUSUM chart one may suspect that there is an abrupt change in the volatility of 

the Nifty series around the futures introduction.  However it may be argued that the spike 

found around the date of futures introduction may only be due to the natural variability of 

the Nifty series.  Thus in this section the change point analysis is approached from a 

Bayesian viewpoint to see if one can statistically infer that there indeed exists a change in 

the volatility process of NSE Nifty without utilizing the knowledge of exact date of 

introduction of futures trading.  

 

The simplest formulation of the change-point problem in Bayesian approach is as 

follows.  The underlying time-varying GARCH model is specified as follows: 
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where Dt takes the value 0 for t = 1,…..,κ and 1 for t = κ+1,…., T, where κ is the 

unknown change-point parameter, that is to be estimated from the data.  It is assumed that 

κ can take any of the integral value between 1 and T-1.  The likelihood function resulting 

from T observations y= (y1, y2,.,yT) generated by model (1) is given by 

 where D denotes the data set, pt( . | Θ) is on 

appropriate Normal probability density function and Θ is the vector of ARMA-GARCH 

parameters.  In the Bayesian approach, a joint prior distribution p(Θ,κ) is assumed for the 

parameters and then the Bayes theorem yields the joint posterior distribution p(Θ,κ|D) 

which is proportional to L(Θ,κ|D)p(Θ,κ).   Interest is now focused on making inference 

about the change-point parameter κ through its marginal posterior probability mass 

function, which is given by 
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That is to evaluate p(κ|D), Θ must be integrated out of p(Θ,κ|D).  Assuming a uniform 

prior distribution for κ, an arbitrary “regular” prior for Θ, and independence between κ 

and Θ, the Laplace approximation of the second integral in (2)  yields  
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where is the MLE of Θ for a fixed κ in model (1) and  is the corresponding 

inverse of the observed information matrix (which is the same as the asymptotic 

variance-covariance matrix of ).    The marginal posterior probability mass function 

of κ as obtained in (3) is plotted in Fig 2.   Like the CUSUM chart, Fig 2 also confirms 

the existence of a change-point on 6th June 2000.  However there appears to be another 

significant change-point occurring on 15th May 2000.  Thus for the event-study 

methodology, the event window is taken to be from 12th May 2000 to 14th June 2000 and 

the pre-Futures period is from 2nd June 1999 to 11th May 2000 and the post-Futures 

period from 15th June 2000 to 1st June 2001.  Note that thus this change-point analysis not 

only allows one to confirm a change around the futures introduction date, it also allows 

an objective selection of the time periods for before or after study.  

^

κΘ
^^

)( kΘΣ

^

κΘ

 

2.3. Controlling Other Factors: 

The next step is the choice of the length of test period or the length of the estimation 

window.  The choice of the length of the test period is a critical question where a balance 

needs to be struck between the length of the period for reliable estimation of model 

parameters, against the possibility of existence of other events that might affect the series 

and thus the parameter estimates.  The later is because stock markets are usually affected 

by a number of other events over a period of time, which are distinct from the event in 

question.  Thus there is a problem of confounding by other intervening variables.  The 

effects of these events on volatility are uncertain and disentangling these intervening 

events and extracting a ‘normal’ model of expected volatility is not a simple task.    
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Indian Stock Market has experienced the introduction of a wide variety of Derivative 

contracts in the last three years viz, Index Futures in June 2000, Index Options in June 

2001, Individual Stock Options in July 2001 and Individual Stock Futures in November 

2001.  We are mindful of these potential confounding events, and careful against 

erroneously attributing a change in volatility to the introduction of Index Futures trading.  

To control these confounding effects, an appropriate test period and a control procedure 

is implemented.  As our study concentrates only on the impact of Index Futures, in order 

to avoid the effect of confounding events of introduction of other derivative contracts, a 

test period of one-year pre and post introduction of index futures trading is considered i.e. 

from 2nd June 1999 to 1st June 2001, which is free from the events of introduction of other 

Derivative instruments.   

 

Two methods are used to guard against drawing erroneous conclusion about the shift in 

volatility due to introduction of index futures trading, which in reality might be attributed 

to other factors.  First, the MSCI World index is used to control for market-wide 

movements.  Second, a control procedure is undertaken by implementing the entire test 

procedure on a similar index that did not have any derivative trading.  If the NSE Nifty 

exhibits a change while the control index does not, then the conclusions drawn with 

respect to the impact of the introduction of the index futures trading on the NSE Nifty are 

strengthened.   Given that index futures contracts have been introduced on the most 

popular and broad measure of Indian stock market, the choice of control index should 
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typically be the next largest index. Towards this end, NSE Nifty Junior is chosen as the 

control index, which does not have futures trading yet.  The theoretical framework of 

analyzing the change in volatility is described in the next sub-section. 

 

2.4.  Using GARCH Model : Analyzing the structure of Volatility  

The general approach adopted in the literature to examine the effect of onset of futures 

trading is to compare the spot price volatility prior to the event with that of post-futures.  

In analyzing the behavior of pre- and post-futures volatility, one should attempt to 

explicitly capture the temporal dependency phenomena and time-varying nature of 

volatility.   In addressing these issues, following Chan and Karolyi (1991), Lee and Ohk 

(1992), Antoniou and Holmes (1995), within the framework of the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model is performed.  By 

providing a detailed specification of volatility, this technique enables one to not only 

check whether the volatility has changed but also provides the endogenous sources of 

change in volatility.   

 

Following Pagan and Schwert (1990) and Engle and Ng (1992), the first step in GARCH 

modeling of daily returns series, which does not possess a unit root, is to remove any 

predictability associated with lagged returns and holiday / week-end effects by 

accommodating sufficient number of (AR, MA) terms and holiday/weekend dummies in 

the mean equation respectively.  To account for worldwide price movements on 

volatility, MSCI world market index return is included as an independent variable.  It 
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should be noted that because of differences in time zones, the lagged world market index 

is taken as independent variable against the level variable. 

 

Thus for NSE Nifty logarithmic daily returns, the conditional mean equation is specified 

as: 
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where Rt is the daily logarithmic return on the NSE Nifty index, RWt is the daily 

logarithmic return on the MSCI World Market Index and HOLt corresponds to week-end/ 

holiday dummy.  Graphical analysis and the computation of some basic statistical 

measures like the kurtosis and Ljung-Box Q-statistics for squared returns provide 

evidence about the presence of volatility clustering phenomenon, which calls for GARCH 

modeling.  To model the conditional variance, Bollerslev (1986) introduced GARCH 

models that relate conditional variance of returns as a linear function of lagged 

conditional variance and past squared error. 

The standard GARCH (p, q) model can be expressed as follows: 
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where, εt is the same error term in equation (3), Ωt  is the information set till time t, αi’s 

are news coefficients measuring the impact of recent news on volatility and βj’s are the 

persistence coefficients measuring the impact of  “less recent” or “old” news on 
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volatility.   These interpretations of αi’s & βj’s can be found, for instance, in Antoniou & 

Holmes (1995) and Butterworth (2000). 

 

First separate models been fitted for the before and after Nifty time series using the 

ARMA-GARCH model of (3) & (4) and it is found that the ARMA-GARCH orders of 

the two models are same.  This facilitates writing a single model for the entire series 

including both before and after components by introducing a dummy variable, Dt, taking 

value 0 for before period and 1 for after.  Accordingly  the conditional mean and variance 

equations (3) & (4) can be refined for the entire series as follows: 
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By including individual dummies, instead of additive or multiplicative dummy, as 

suggested in Butterworth (2000) and Gulen & Mayhew (2000), the proposed ARMA-

GARCH model in (3)-(4) allows one to identify and study the nature of potential impacts 

of introduction of the futures contracts on the structure of both mean level and volatility 

of the spot market in general terms. By examining the significance of dummy 

coefficients, one can test whether there is a change in both the speed and persistence with 

which the volatility shocks evolve.  Following the onset of futures trading, a positive 

significant value of αid  would suggest that news is absorbed into prices more rapidly, 

while a negative and significant value of βj,d implies that “less recent news” have less 

impact on today’s price changes. This means that the investors attach more importance to 
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recent news leading to a fall in the persistence of information.  Thus, the ARMA-

GARCH framework enables one to model changes that might occur both in the mean 

level and structure of volatility, which can be detected by checking the sign and 

significance of the coefficients attached to dummy variables. 

 

2.5.  Marginal Volatility Comparison 

Though the GARCH framework explicitly model how the conditional volatility evolves 

over time, it does not comment on change in volatility of the series as a whole, which is 

the primary objective of the study. Further the conditional volatility of the series or 

residuals by definition depends on the past information and hence unable to conclude on 

the overall volatility pattern of the series.   This is accomplished by calculating the 

marginal volatility of the series, which is derived from the ARMA-GARCH model (eqn 5 

& 6) as follows: 
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The marginal variances of the return series before and after the index futures introduction 

say  and  respectively are calculated from the empirically fitted model using (7). 

Using the Wald test statistic, the null hypothesis of no change in the marginal volatility of 

the Nifty returns series before and after the introduction of the futures contracts, can be 

tested as follows: 

2
Bσ 2

Aσ

H0:  1)( 2

2
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where denotes the vector of parameters, which include the coefficients of the mean and 

variance equations, of both the “before” and “after” ARMA-GARCH models.  The Wald 

statistic for testing these hypotheses is given by 
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is the gradient vector of g (.), evaluated at and  is the inverse of the observed 

information matrix of the full likelihood containing both the “before” and “after” terms, 

which are assumed to be independent. For large samples Z would follow a Standard 

Normal Distribution under H0 and thus one can check for its significance.  

Ψ̂ )ˆ(ΨCov

 

3. DATA and PRELIMINARY ANALYSIS:   

Daily closing prices for S & P CNX Nifty, CNX Nifty Junior and MSCI World Index 

were obtained respectively from www.nseindia.com and www.msci.com over the period 2nd 

June 1999 to 1st June 2001.  The data comprises a total of 481 observations, of which 238 

observations relate to the period prior to the introduction of futures trading and the 

remaining 244 observations to the period after the introduction of futures trading.  

Continuously compounded percentage returns are estimated as the log price relative.  

That is for an index with daily closing price Pt, its return Rt is defined as log (Pt/Pt-1).  All 

the return series (before, after and full period) are subjected to Augmented Dickey Fuller 
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test and the null hypothesis of unit root is rejected in all cases.  Table I presents a set of 

basic descriptive statistics and Fig 3 plots the returns, correlogram of returns and squared 

returns.  The most relevant figures in Table I for this study are the variances, which 

provide an initial view of volatility for NSE Nifty.  The pre-futures NSE Nifty volatility 

is greater than that of post-futures and this reduction in variance is statistically significant 

through an F-Variance ratio test.   This broadly suggests that the introduction of index 

futures has not destabilized the spot market.   However, inferences cannot be drawn from 

these figures alone, as they do not consider market-wide movements, temporal 

dependence in returns and time-varying nature of volatility.   Further, Table I reports the 

LB statistic of both returns and squared returns up to 20 lags.   The presence of 

significant LB statistics clubbed with excess kurtosis is compatible with the temporal 

dependency and volatility clustering phenomena in the NSE Nifty returns.  The NSE 

Nifty raw returns series plot in Fig 3.1 and the correlogram of returns and squared returns 

in Fig 3.2 and Fig 3.3 further supports this.  The return series displays the volatility-

clustering phenomenon, namely, large (small) shocks of either sign tend to follow large 

(small) shocks.  These preliminary findings motivate and call for further investigation by 

GARCH modeling. 

 

4.  EMPIRICAL RESULTS: 

The conditional mean equation as specified in (3) is estimated with appropriate lag 

structure for Rt and RWt for both before and after periods separately.  As the orders of 

both the models are same, the mean structure of the entire period is estimated using 

equation (5).  The results indicate that the entire mean return process is AR(1) with a 
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strong effect of MSCIt-1.  The primed coefficients associated with the dummy variables 

turned out to be insignificant.  This suggests that there is no change in the mean returns 

with the inception of Index Futures trading. The final estimation results after dropping 

these insignificant terms are reported in Table II together with the standard diagnostic 

statistics.  The model diagnostic graphs namely the Residual Plot, Correlogram of 

residuals and residual squares are displayed in Fig 4.1, Fig 4.2 and Fig 4.3.  Following 

Engle and Ng (1993), Ljung-Box test statistics reported for the 20th order serial 

correlation both in the residuals and their squares.  The Ljung-Box statistics reported for 

the residual levels tell us that the regression model possibly removes serial correlation in 

the stock return series suggesting the elimination of the predictable part of the return 

series.  The Ljung-Box test statistics for the squared residuals however are highly 

significant, consistent with the existence of time varying volatility of index returns.  This 

is further supported by the excess kurtosis of the residuals.  These statistics support that 

some type of GARCH specification as specified in equation (6) is necessary to properly 

model returns.   

Thus equations (5) and (6) are next jointly estimated using the BHHH algorithm and 

Table III reports the quasi-maximum likelihood estimates of the coefficients of (5) and 

(6).  The model diagnostic graphs namely the Residual Plot, Correlogram of residuals and 

residual squares are displayed in ,Fig 5.1, Fig 5.2 & Fig 5.3.  These diagnostics show that 

the residuals of the model are reasonably well behaved. The portmanteau (Box-Ljung) 

statistics in Table III evaluate the serial correlations in the raw and squared standardized 

residuals of the model up to lags 20 and show that the specified model has captured most 

of the conditional dependence in the returns and squared returns well.  The insignificant 
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LM test statistics suggests the absence of any further ARCH effects.    Finally, the sign 

and size bias test statistics also do not indicate any significant degree of asymmetry in the 

residuals supporting the correct model specification.  As the joint bias statistic is 

marginally significant an asymmetric GARCH model also estimated.  However the 

symmetric GARCH model is chosen against Asymmetric GARCH on the basis of AIC 

criterion. 

 

In Table III, the estimates of α1,d and β1,d, among the GARCH parameters are of interest.   

There is a substantial increase in news incorporation coefficient α1,d, which is positive, 

implying increase in market efficiency, measured by its ability to quickly incorporate 

new information. This is followed by a decrease in the persistence coefficient β1,d, which 

is negative, implying that the volatility shocks become less persistent and hence the spot 

market becomes more efficient. This finding is further strengthened by the fact that the 

pre-futures model is a candidate for I-GARCH, whereas the post-futures model is 

obviously not so.  Pre-futures  α1 and β1 sum to 0.9371, compared to 0.8143 of post-

futures.  Wald tests were carried out to test for I-GARCH and reveal that while the pre-

futures sample is integrated, the post-futures model is not so at the 10% level.  Thus the 

persistence of shocks decreased since the onset of index futures trading.  Therefore, the 

introduction of the index futures trading led to a more rapid absorption of news into 

prices and a decrease in persistence.  Further the marginal volatility of NSE Nifty before 

and after futures introduction is 4.029684 and 3.573364265 respectively and the Wald’s 

test statistic for the significant difference between the volatilities turns out to be –0.2728 

and the p-value is 0.3.  This suggests that one cannot reject the null of index futures does 
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not impact the underlying spot volatility.  Hence on the whole, the volatility of the Nifty 

series has not changed but the structure of the volatility changed due to the introduction 

of index futures. 

 

The entire test procedure is replicated by considering six-months and nine- months before 

and after futures introduction and the result is qualitatively same. Further the table shows 

that the results of NSE Nifty are in contrast with those of Nifty Junior, the control index.  

As the coefficients of the dummies in the variance equation of NSE Nifty Junior are not 

significant, the evidence strengthens the result that the introduction of Index Futures 

trading has indeed changed the dynamics by which the Nifty spot volatility evolves.  

5. CONCLUSION: 

This paper investigates whether and to what extent the introduction of Index Futures 

trading has had an impact on the mean level and volatility of the underlying NSE Nifty 

Index.  The results reported for the NSE Nifty indicate that while the introduction of 

Index Futures trading has no effect on mean level of returns and marginal volatility, it has 

significantly altered the structure of spot market volatility.  Specifically, there is evidence 

of new information getting assimilated and the effect of old information on volatility 

getting reduced at a faster rate in the period following the onset of futures trading. This 

result appears to be robust to the model specification, asymmetric effects, sub-period 

analysis and market-wide movements. These results are consistent with the theoretical 

arguments of Ross (1989). 
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Table I: Descriptive Statistics 

NIFTY JUNIOR 
  Full Before After  Full Before After 
 Mean -0.018904 0.055368 -0.091954 -0.073798 0.059229 -0.193684
Variance 3.451060 3.981166 2.933170 6.594886 8.147417 5.188254
F-test   1.357291 (0.0184)   1.570358 (0.0006) 
Skewness -0.07231 0.126819 -0.426629 -0.429369 -0.407416 -0.562835
Kurtosis 4.687262 4.696344 4.281641 3.5663 3.317125 3.587648
Jarque-Bera 57.59433 29.29657 24.00288 21.25074 7.549617 15.99027
LB(20) 25.605(0.179) 21.747(0.354) 37.920(0.009) 56.724(0.000) 43.700(0.002) 27.915(0.111)
LB2(20) 74.222(0.000) 47.646(0.000) 61.502(0.000) 301.08(0.000) 252.57(0.000) 48.190(0.000)
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Table II: Regression Results: Evidence of GARCH effects 

)1,0(~
1111110

N
RWRR

t

ttttt

ε
εγεθφφ ++++= −−−  

VARIABLE Estimate p-value 

φ0 0.0037 0.9655
φ1 -0.7473 0.0000
θ1 0.8365 0.0000
γ1 0.3886 0.0000
F-stat 10.3719 0.0000
LB (20) 22.0460 0.2300
LB2 (20) 60.0150 0.0000
LM (4) 5.5988 0.0002
Skewness 0.1065 
Kurtosis 4.4492 0.0000
Jarque-
Bera 42.8231 0.0000

LB(k)   is the portmanteau statistic testing joint significance of  return autocorrelations up to lag k;     
LB2(k) is the portmanteau statistic testing joint significance of  return autocorrelations up to lag k;       
LM(k) is the portmanteau statistic testing the presence of ARCH effects up to lag k. 
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Table III: Results of AR (1)-GARCH (1,1) model with BHHH algorithm using Bollerslev-Wooldrige 
robust standard errors. Rt takes either NSE Nifty or NSE Junior, RWt-1 takes MSCI one Dt takes on a value 
of zero before futures introduction and a value of one after futures introduction. 
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NSE Nifty NSE Junior Parameter 
Estimate p-value Estimate p-value 

φ0 0.0592 0.0236 0.1851 0.3578 

φ1 0.6210 0.0000 -0.8272 0.0000 

θ1 0.3762 0.0000 0.1267 0.0051 

γ1 -0.6679 0.0000 0.9373 0.0000 

α0 0.2498 0.1597 0.2462 0.2675 

α1 0.0784 0.0186 0.1529 0.02944 

β1 0.8587 0.0000 0.8267 0.0000 

α0, D 0.4197 0.1194 1.3833 0.1079 

α1,D 0.4129 0.0010 0.0579 0.6554 

β1, D -0.5357 0.0000 -0.3916 0.1212 

Diagnostics 
Residual Mean -0.0882 (Mean=0) 

 0.0520 
-0.0519 (Mean=0) 

0.2469 

 Skewness 
0.0683 (Sk=0)    

 0.5424 
-0.2236 (Sk=0)    

 0.0431 

Kurtosis 
4.1477 (Ku=3)    

0.0000 
3.1620 (Ku=3)  

  0.4656 

Jarque-Bera 
26.7749 (JB=0)    

0.0000 
4.6579 (JB=0)  

  0.0974 

LB (20) 27.7249 0.1160 35.6837 0.0167 

LB2 (20) 14.8044 0.7875  7.8398 0.9929 

LM (4)  0.2627 0.9019  0.1536 0.9614 

Sign Bias 0.6252 0.5321   1.7826 0.0753 

Negative Size Bias -0.5963 0.5512   0.8630 0.3885 

Positive Size Bias -1.0204 0.3080 -0.1503 0.8806 

Joint Bias 2.2437 0.0824   2.0044 0.1125 

Wald Test 

111:0 =+ βαH  1.5985 0.2061 0.2757 0.5995 

1: ,11,110 =+++ ddH ββαα  2.6862 0.1012 3.9714 0.0463 

LB(k)   is the portmanteau statistic testing joint significance of  return autocorrelations up to lag k;                         
LB2(k) is the portmanteau statistic testing joint significance of  return autocorrelations up to lag k;                         
LM(k) is the portmanteau statistic testing the presence of ARCH effects up to lag k.                                                   
Sign bias, Negative size, Positive size and Joint bias tests are asymmetric test statistics given by Engle and Ng (1993) 
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Fig 1 : CUSUM Plot for Nifty Squared Daily Returns

12th June 1999 to 1st June 2001
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Fig 2 : Plot of Marginal Distribution of Kappa
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Fig 3.1 : NSE Nifty Daily Retruns
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Standardized Residual Plots

Fig 4.1 : Regression Standardized Residual Plot
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Fig 5.1 : Standardized Residual Plot of ARMA-GARCH
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COrrelogram Plots
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Fig 3.2 : NSE Nifty Daily Retruns Correlogram
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Fig 4.2 : Regression Residuals Correlogram
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Fig 5.2 : Residual Correlogram of ARMA-GARCH
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Fig 3.3 : NSE Nifty Daily Squared Retruns Correlogram
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Fig 4.3 : Regression Squared Residuals Correlogram
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Fig 5.3 : Residual Correlogram of ARMA-GARCH
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