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Abstract 

In this paper we develop an evolutionary kernel-based time update algorithm to 

recursively estimate subset discrete lag models (including full-order models) with a 

forgetting factor and a constant term, using the exact-windowed case. For the first 

time ever in such models, the proposed recursions cover subset discrete lag models 

(SDL) with a forgetting factor. The algorithm applies to causality detection when the 

true relationship occurs with a continuous or a random delay. We then present two 

illustrations to demonstrate the use of the proposed evolutionary algorithm. In the 

first illustration we apply the proposed estimation algorithm to investigate the 

relationship between Australian’s ten-year Commonwealth Treasury bond futures 

contracts and the underlying bond assets. The findings confirm the existence of 

instantaneous causal and bi-directional feedback relationships between this bond and 

futures markets. In the second illustration we apply the algorithm to identify the 

relationship between Australian’s All Ordinaries Share Price Index and Australian’s 

All Ordinaries Share Price Index futures. The findings also show the existence of 

instantaneous causal and bidirectional feedback relationships between the Australian 

stock and index futures markets. 



1. Introduction 

Powerful computing equipment has had a dramatic impact on financial time series 

analysis, and has motivated development of innovative approaches to financial time 

series modelling and data processing (Refenes et al, 1996).  New methodology, 

involving the evolutionary kernel-based recursive subset time series approach, 

specifies models in a more sophisticated learning manner and uses the data in highly 

adaptive ways. Against that background this paper applies an innovative and 

evolutionary kernel smoothing algorithm to financial data in new and important areas, 

exemplified in the development and application of novel sequential recursive 

estimation of subset discrete lag (SDL) models using the exact-windowed case.  

 

SDL models, including full-order models as a special case, are often necessary. 

Holmes and Hutter (1989) apply the SDL modelling which involves a dependent 

variable y(t) and a set of the current and/or lagged x(t) where there is a continuous or 

random delay. They also present the case that the Granger causal relationship 

between money supply and income in the U.S. is weak and may occur with a delay.  

Further, subset time-series models are often relevant, especially when measurements 

exhibit some form of periodic behaviour with a range of different natural periods. In 

particular, a sampled discrete transfer function includes the absent lagged variables in 

both its denominator and numerator, and this transfer function represents the structure 

of a underlying system with a subset structure. Most important, if the underlying true 

SDL process has a subset structure, the suboptimal model specification (for instance, 

a full-order structure) can give rise to inefficient estimates and inferior projections. 

When interpreting research findings it is impractical to ignore the possibility of zero 

coefficients in SDL models, particularly when periodic responses are likely.  
 
Also, financial time series model builders are often concerned that the coefficients of 

their established models may not be constant over time, but vary when the models are 

disturbed by changes arising from outside factors. This has motivated researchers to 
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develop sequential estimation algorithms that allow the coefficients to slowly evolve. 

In SDL modelling, while there are well developed sequential fitting algorithms for the 

full-order models (Kalouptsidis et al, 1984), these algorithms are not applicable to 

SDL models with a subset structure. This is because the ‘optimal’ subset model at 

time instant t may become ‘suboptimal’ at future time points. If one simply sets zero 

values for the coefficients of the missing lags and then applies the recursive 

algorithms for the full-order case, this will lead to a loss of efficiency in the model 

performance, as the subset structure of the model is not updated properly.   

 

Further, in order to make effective use of parallel processing equipment and thereby 

gain computational speed, recursive algorithms are to be developed. These algorithms 

are computationally efficient; avoid cumbersome matrix inversion; and provide the 

obvious relations to update subset models at consecutive time instants. There will be 

practical applications in complexity management, developed for use in financial 

markets through the use of new SDL recursive algorithms.  

 

Recently the application of the forgetting factor approach (Brailsford et al, 2005) to 

financial time-series analysis, in a subset autoregressive (AR) framework, has become 

widespread. Specifically, the forgetting factor has been widely used to capture non-

stationarity through a slowly time-varying AR model. A subset AR model, which 

works well in explaining the behaviour of a process over a small sample in a given 

time period, may have to be augmented for a longer data span which evolves slowly 

over time due to economic, political or structural changes. Consequently, the 

forecasts obtained by allocating greater weight to more recent observations and 

‘forgetting’ some of the past are likely to outperform alternatives in which such an 

allocation is not adopted. Forgetting factors can be both fixed and variable. Gijbels et 

al (1999), propose a relationship between a fixed forgetting factor λ and the 

bandwidth h of a kernel in kernel smoothing, where T 1 eh (x x ) / (T 1) log= − − − λ , with 
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a time-series observed at equal-spaced time points . Brailsford et al (2005) 

derive a  relationship between a variable forgetting 

factor at time t, λ(t), and the bandwidth of a kernel, and thus establish the linkage 

between the variable forgetting factor approach and kernel smoothing.  SDL models 

using the forgetting factor have not been applied, however, to a wide range of 

problems arising in financial time-series modelling, estimation and simulations. This 

motivates development of novel evolutionary kernel-based recursions for SDL 

models. In this paper we focus on the fixed forgetting factor and use the exact-

windowed case for data to undertake modelling investigation. 

1x , , x… T

i)T i T T i eh (x x ) / log (T− −= − − λ −

 

The remainder of the paper is organised as follows. In Section two we present the 

algorithm for recursively estimating SDL models. The proposed recursions cover, for 

the first time, SDL models, with a forgetting factor and a constant term.  It is 

noteworthy that these recursions can be applied to vector SDL models (including both 

subset and full-order cases) in a straightforward fashion. In Section three it is shown 

that the current forgetting factor inclusive algorithm using the exact-windowed case is 

quite different from the algorithm, using the pre-windowed case. In Section four an 

illustration of the proposed evolutionary algorithm is used to describe the provision of 

all possible model structures for SDL modelling. In Section five, two illustrations are 

presented to demonstrate the practical use of the algorithm. The first application 

concerns a causality relationship between the bond and futures markets. The second 

application concerns the relationship between an Australian share-futures market. In 

Section six, a summary is given.  

 

2. New evolutionary recursive algorithms for SDL modelling 

In this section we introduce forward time-update recursions which recursively 

estimate a SDL model for the exact-windowed case. 
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In SDL modelling, it is desirable to relate  to present and past data for . We 

consider a SDL model of the form 

y(t) x(t)

 

 
p a

i s
i 1

y(t) a (I )x(t 1 i) (t)
=
∑+ ρ+ + − = ε { }i s sand    a (I ) 0,    as  i I , ,= ∈  (2.1) 

where  is  a constant term, the order of the system is ρ 1 2 sp, 1 i i i p 1;≤ < < ≤ −  

 is a deleted lag ;  , i=1,2,...,p are parameters,  and  is a 

stationary process with E{ }=0 and  

x(t 1 i)+ − s(i I )∈ ia a (t)ε

a (t)ε

 

 a a 0
E{ (t) (t )}

0 0
Ω τ =⎧

ε ε − τ = ⎨ τ ≠⎩
 . 

 

Equation (2.1) and properties associated with  together constitute SDL, which 

involves a regressand and a regressor . The set Is specifies the integers 

between 1 and p-1 that correspond to excluded parameters.  

a (t)ε

y(t) x(t)

 

Given two finite data sample sets, {x(n),..., x(T)} and {y(n),..., y(T)}, it is necessary 

to sequentially estimate all possible SDL models from (2.1) using the exact-

windowed case. Since the actual scheme of (2.1) may not be order p, the resulting 

estimates of ai is denoted by ap,n,T(i), where T is the sample size under examination. 

Then the predictor of a SDL system of (2.1) can be described as 

 
p,n ,T s p 1,i sŷ(i) A (I )X (I )    −′= − , (2.2) 

 
where , and p,n,T p,n ,T p,n,T p,n,T p,n,T   A a (1), , a (2), , a (p)′ ⎡ ⎤= ρ⎣ ⎦…
 

[ ]p,iX x(i), 1, , x(i p)  ′= −… . 
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p,n,T sA (I )  is formed by removing p,n,T 1 p,n,T sa (i ), , a (i… )  of p,n,TA , and p,i sX (I )  is 

formed by removing of 1 sx(i 1 i ), , x(i 1 i )+ − + −… p,iX . 

 

The residual for observation i is 

 

 . p,n ,i s p,n,T 1 s p 1,i s(I ) y(i) A (I )X (I )  − −′η = +

 

In reality, many time-series systems present complex non-stationary features and cannot be 

modelled by assuming that y(t) and x(t) are stationary. Thus, an estimate of the structure at 

time t should give a higher weight to the more recent observations and a lower weight to 

the observations of the more distant past.  Thus, for a SDL model fitted by these two 

sample sets, we have 

 

 
T T i

p 1,n,T s p,n,T s p 1,n,T s p 1,n,T s p 1,i s p 1,i s
i p 1 n

R (I )A (I ) r (I )    where  R (I ) X (I )X (I )−
− − − −

= − +
∑ ′= − = λ −  

 
T TT i T i 2

p 1,n,T s p 1,i s p,T s p,n,i s
i p 1 n i p 1 n

r (L ) X (I )y(i),     and  (I ) (I )− −
− −

= − + = − +
∑ ∑= λ Ω = λ η , 

where ,  is the fixed forgetting factor as described in Hannan and Deistler 

(1988).  

λ 0 < ≤λ ,1

 

To develop time update recursions for SDL modelling, we consider the forward AR 

(p, ) model with a constant term of the form sI

p

i s
i 1

x(t) h (I )x(t i) (t),
=
∑+ τ + − = ε   i sh (I ) 0,=  as si I∈ , (2.3) 

where ε(t) is an independent and identically distributed random process with  

 

sE{ (t)} = 0,  E{ (t) (t k)} U( ) as k 0I
0 as k

ε ε ε − =
0

=
= ≠

. 
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We also consider a backward AR(q) model of the form 

 
p-1

s sp i
i=0

( )x(t) +  + ( )x(t - p + i) = (t),g gM Mβ ε∑  

 

s s s0 i   ( ) = 1, ( ) = 0,  as i M , g gM M ∈  (2.4) 

where E{ (t)} = 0,ε  and the disturbance variance is s U( ), M sM  represents an integer 

set with elements , =p- , j = 1,2,...,s. A reciprocal integer pair for 

a forward subset AR model and a backward subset AR model is a pair of (2.3) and 

(2.4). Figure 1 shows a lag tree diagram which illustrates the reciprocal integer pairs 

of all subset AR processes up to and including lag length, 

1 2 sm ,  m ,  ..., m jm ji

k 4= . Note that numerals 

represent particular lags in a forward AR and underlined numerals represent such 

leads in a backward AR. 

 

We need to sequentially estimate all possible subset AR models from (2.3) and (2.4) 

using the exact-windowed case. Then we define observation i 

 

p,i = [ 1, x(i -1),.., x(i - p)], X′  (2.5) 

pp,n,T p,n,T p,n,T p,n,Tp,n,T p,n,Tp,n,T p,n,T= [ , (1),..., (p)],  = [ (p), ,..., (1)] ,g gGH h h  ξ′′ τ  

 

For a reciprocal integer pair of the forward AR(p, ) and the backward AR(p,  

models fitted to this sample set, we have 

sI sM )

 

T p-1,i sT i
p,n,T s p,i p,i p,is s s

i=p+n sp,i

 ,
( )x(i) OX ( ) = ( ) ( ),  where ( ) =  =  O O OR I X X X ( ) x(i - p)X L

−
⎡ ⎤ ⎡ ⎤

λ ′∑ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

 

 7



T 2sp,n,T T i
p,n,T s sp,n,T p

t=p+np,n,T s

( )1 U I ( )   = ,  ( ) = ,(t)UR I I( ) 0H I
−⎡ ⎤ ⎡ ⎤ λ∑ ⎡ ⎤⎢ ⎥ ε⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 

where  represents an integer set with elements , j=1,...,s, and = +2. sO jo jo ji p,iX ( ) 

and 

sO

p 1,iX − ( ) are formed by removing the ( ), ..., ( )'th row of sO 1o so p,iX and p 1,iX −  

respectively.  represents an integer set with elements , and = +1. and sL jl jl ji p,i sX (L )  

is formed by removing the ( ), ..., ( )'th row of 1l sl p,iX . Also p,n,T s( )H I  is formed by 

removing p,n,T 1( )h i , ..., p,n,T s( )h i  of p,n,TH .  

 

Now we define 

 
T T 1 i

sp,n,T s sp,i p,i
i=p+n

( ) ( ), ( ) = X XC I L+ −∑ ′λ L  -1
p,n,T s s sp,n,T p,T+1( ) = ( ) ( ) ,XCK I I L  and 

s s p,n,T sp,n,T p,T+1 ( ) = 1 + ( ) ( ) ,XI L K′τ I  and s p,n,T sp,n,T+1 p,T+1( ) =  I | ( ) ( )Xe I H I⎡ ⎤′⎣ ⎦ sL  (2.6) 

 

In addition, for the corresponding backward AR(p,Ms), we will have  

 

T Tp-1,i sT i T i
p,n,T s p-1,i s p,n,T s s p-1,i Sp-1,i

i=p+n i=p+n
( ) ( )

( )X M( ) = ( ) ,  ( ) =R M X M D M M X MXx(i - p)
− −∑ ∑
⎡ ⎤

λ ⎡ ⎤′ ′λ⎣ ⎦⎢ ⎥
⎣ ⎦

,

 
T T i 2

s pp,T
t = n+p

 ( ) = (t)MU
−∑ ⎡ ⎤λ ε⎣ ⎦ ,  

 

and 

sp,n,T
p,n,T s

sp,n,T

( )    0   G M ( )    =   R M   1  ( )MU

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

,  
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where and sp,n,T( )G M p-1,i s(X M ) are formed by removing the (p+2-m1),...,(p+2-ms)'th 

row of p,n,TG and p-1,iX  respectively. We note p+2-mj=2+ij=oj, thus we can easily see 

that p-1,i s( )X M =  and p-1,i s( )OX p,n,T s( )R M = p,n,T s( )R I .  

 

Next, we consider a forward AR(p+1,Is) model with a constant term of the form 

 
p 1

1 s i s i s s
i 2

x(t) + ( )x(t -1) +  + ( )x(t - i)  = (t), ( ) = 0, as i ,h L h L h L L
+

=
∑τ ε ∈  

where we have shifted theconstant term to the third term of the model for ease of 

matrix algebra operations. Suppose the model is based on the sample set {x(n), 

x(n+1), ..., x(T+1)}, we have 

 
T+1 T 2 i

s p,i-1 p,i-1s sp+1,n,T+1
i=p+1+n

( ) ( ), ( ) = C O OL X X+ −∑ λ ′  -1
s s p,T+1 sp+1,n,T+1 p+1,n,T+1( ) = ( ) ( ),C OL L XK

s

∈

 

 

and  (2.7) s p,T+1p+1,n,T+1 s p+1,n,T+1 ( ) = 1+ ( ) ( ).OL X LK′τ

 

Again we consider a forward AR(p,Ls) model with constant, i.e., 

 
p

1 s i s i s s
i=2

( ) ), ( ) ,x(t) + ( )x(t -1) +  + x(t - i)  = (t = 0, as ih L h L h L L∑τ ε  

where we keep the constant term in the third term to assist with our algebraic 

manipulations. Suppose the model is fitted to the sample set {x(n+1), x(n+2),..., 

x(T+1)}, analogously we have 

 
-1

s s p-1,T sp,n+1,T+1 p,n+1,T+1( ) = ( ) ( ),C OL L XK +1

s

 

and       (2.8) s p-1,T+1p,n+1,T+1 s p,n+1,T+1( ) = 1+ ( ) ( ). OL X LK′τ
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The matrix inversion of p,n,T s ( ) R I provides 

 
1 1

s s sp,n,T p,n,T p,n,T1
sp,n,T 1 1 1

s s s s sp,n,T p,n,T p,n,T p,n,T p,n,T p,n,T

U ( ) U ( )H ( )I I IR  ( ) I H ( )U ( ) C ( ) H ( )U ( )H ( )I I I I I I

− −
−

− − −

′⎡ ⎤
= ⎢ ⎥′+⎢ ⎥⎣ ⎦s

 (2.9) 

Right multiply with sp,T+1( )X L on both sides of (2.9) and employ (2.5) and (2.6), so 

that we have 

-1
s p,n,T p,n,T+1p+1,n,T+1

p,n,T s p,n,T s

  0    I  
 ( ) =  + ( ) ( ).U eLK ( ) ( )K I H I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

s sI I  (2.10) 

 

Again we right multiply the transpose of (2.10) with sp,T+1( )X L , employ (2.5), and 

add 1 to both sides, so that we now establish 

 
-1

s s s sp+1,n,T+1 p,n,T p,n,T+1 p,n,T p,n,T+1 ( ) =  ( ) + ( ) ( ) ( ).e U eL I I Iτ τ sI  (2.11) 

 

Analogously we can have 

 

s sp,n,Tp,n+1,T+1 -1
s sp+1,n,T+1 p,n,T p,n,T+1

( ) ( )L G MK ( ) =  + ( ) ( ), L MK U e  I    0  
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
sM  

 
-1

s s s sp+1,n,T+1 p,n+1,T+1 p,n,T+1 p,n,T p,n,T+1 ( ) =  ( ) +  ( ) ( ) ( )L L M Me U e
  

τ τ s ,M  

where s s p,T+1p,n,Tp,n,T+1 ( ) = ( ) | I ( ) . GM M Xe ⎡ ⎤′⎣ ⎦ sM   

 

From Penm et al (1995), if we permute the first row and the second row of the 

p 1,n,T 1 sK (+ + I ) , the resulting vector is the p 1,n,T 1 sK (I+ + )  associated with a forward 

AR(p+1,Ls) model of the form 
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p+1

1 s i s
i=2

x(t) +  + ( )x(t -1) + ( )x(t - i)  = (t),h L h Lδ ε∑  s sh(i, ) = 0, as i ,L L∈  

which means that p 1,n,T 1 sK (I+ + ) = p 1 p 1,n,T 1 s(I )+ + +P K , where p 1P +  is a permutation matrix 

of the form: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000

0100
0001
0010

. 

Note that if there is a consecutive set of k deleted lags beginning at lag 1 in the 

forward AR (p, ) model fitted using the sample {x(1), ..., x(T+1)}, we have sI

 

p,nT 1 s p k,n,T 1 k kK (I ) K (I+ − + −= )  and p,n,T 1 s p k,n,T 1 k k(I ) (I )+ − + −τ = τ , (2.12) 

where  contains , and =j, j=1,2, ..., k, and  contains . sI 1 ki ,  ..., i ,  ..., is ji kI k 1 s ki ,  ..., i+ −

 

In implementing the recursions using the exact-windowed case, the starting point of 

the data range has been shifted from n to n+1 in the following steps: 

 

 p,n ,T s p 1,n,T 1 s p,n 1,T 1K (I ) K (I ) K (I )+ + + +→ → s . 

If n=1, this means that the starting point of the data range has been shifted from point 

1 to point 2. That is K p,1,T (Is) to K p, 2,T+1 (Is). 

 

However in the forgetting factor exclusive algorithm proposed in Penm et al (1995), 

the starting point of the data range has always been fixed to point 1. Thus the 

following steps apply: 
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K p,1,T (Is)  to K p+1,1,T+1 (Is)  to K p,1,T+1 (Is)  [not K p, 2,T+1 (Is)]. 

 

Therefore the current forgetting-factor inclusive algorithm is different from the 

algorithm without the forgetting factor proposed in Penm et al (1995). The current 

algorithm, with a constant term or without a constant term, will shift the beginning 

point to compute the Kalman gain vector, K, from n to n+1 (not fixed), but the 

algorithm proposed in Penm et al (1995) use a fixed starting point which is always 

Point 1. 

 

This change from the beginning point n to n+1 of the data range also applies to the 

angular variable, τ.  The current algorithm, with a constant term or without a constant 

term, will shift the beginning point to compute the angular variable from n to n+1 

(not fixed), but the algorithm proposed in Penm et al (1995) uses a fixed starting 

point which is always Point 1. 

 

Now we turn to the SDL modelling, and the following relations at t=T+1 have been 

established. 

 

p 1,n,T 1 s p,n,T 1 s p 1,n,T 1 sR (I )A (I ) r (I ),− + + − += −  (2.13) 

where p 1,n,T 1 s p 1,n,T s p 1,T 1 s p 1,T 1 sR (I ) R (I ) X (I )X (I )− + − − + − +′= λ + , 

 and  p 1,n,T 1 s p 1,n,T s p 1,T 1 sr (I ) r (I ) X (I )y(T 1)− + − − += λ + +

 

We compare (2.13) to the relations at t=T, the following time update recursions for 

SDL modelling can be developed. 

 

p,n,T 1 s p,n,T s p 1,T 1 s(I ) y(T 1) A (I )X (I ) + ′θ = + + − +   (2.14) 
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1
p,n,T 1 s p,n,T 1 s p,n,T 1 s(I ) (I ) (I )−

+ +η = θ τ +  (2.15) 

p,n,T 1 s p,n,T s p,n,T 1 s p,n,T 1 sA (I ) A (I ) K (I )  (I )+ += − η +  (2.16) 

p,T 1 s p,T s p,n,T 1 s p,n,T 1 s(I ) (I ) (I )  (I )+ +Ω = λΩ +η θ +  (2.17) 

 

In addition, the forward-time update algorithm from T to T+1 is summarised in Table 1. 

  

3. An illustration 

Assuming two sets of data, { } { }1 2 97 1 2 97x ,x , ,x ,   and  y ,y , ,y , ,… … … …  suppose we 

wish to employ the above proposed forward-time update recursions for all possible 

subset AR models and SDL models from (n,T)=(1,97) to (n,T)=(1,98), where it is 

assumed that the maximum lag for AR models and SDL models is P=4 for illustration 

purposes. Also, p,n,T s p,n,T p,n,T s p,n,T s p,n,T s p,T 1 sH (I ),  U (I ),  K (I ),  (I ),  G (M ),  X (O ),  +τ  

. p,n,T s p,n,T sU (M ),A (I ), p 1,T 1 sX (I− + ) and p,T s(I )Ω are available at time T = 97, By 

employing the equations (2.18a)-(2.18m), we can update the matrices 

p,n,T s p,n,T sH (I ) and G (M ) and parameters p,n,Tp,n,T s sU (I )  and U (M )  for each 

reciprocal integer pair of the AR(p, Is) and AR(p, Ms) at T=98. Both 

p,n,T s p,n,T sK (I ) and (I )τ  at T=98 corresponding to the forward autoregressions that 

include lag 1 can also be acquired from the recursions (2.18e) and (2.18h). Figure 2 

illustrates the situation, single lines show the recursions. Further, by employing the 

equations (2.18n)-(2.18q), we can update the matrix, and 

parameter for each SDL model at T=98. 

p,n ,T sA (I ),  

  p,T s (I )Ω

 

Both p,n,T s p,n,T sK (I ) and (I )τ  at T=98 corresponding to the forward autoregressions 

that exclude lag 1 may be obtained from (2.12), i.e. the quantities 

p,n,T s p,n,T sK (I ) and (I )τ  will be identical at T<98 for the forward autoregressions 
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specified by double lines in Figure 2. SDL models which parameters will be updated 

by using both  acquired are also shown in Figure 2. At this point, we can 

carry out the forward time-update recursions from T=98 to 99, T=99 to 100, and so 

on. 

K and τ

 

To determine the optimal SDL model at each time instant, we utilise the order 

selection criterion suggested by Hannan and Deistler (1988). From now on, we will 

use MHQC as an abbreviation for this criterion, which is defined by 

 

MHQC= log(estimated residual variance) [2 log log+ f(T)/f(T)  ]N,

where f(T)=
T T-t

t p 1 n= − +
∑ λ  is the effective sample size (see Hannan and Deistler, 1988), 

and N the number of functionally independent parameters. The optimal model 

selected is the one with the minimum value of MHQC. 

 

4. Features of the current forgetting factor inclusive algorithm using the exact-

windowed case 

As described in Section 3, the current forgetting factor inclusive algorithm using the 

exact-windowed case is quite different from the algorithm using the pre-windowed 

case (Penm et al, 1995). A significant difference is as follows: 

 

The current algorithm uses the exact-windowed case to estimate the parameters of a 

DL model. For simplicity we consider the following DL(p) model without forgetting 

factor:   
p

i
i 0

y(t) a x(t i) (t)
=
∑+ − = ε  (3.1) 

For two given sets of data {x(n), x(n 1), , x(T)}+ … and {y(n), y(n 1), , y(T)},+ …  the 

model (3.1) using the exact-windowed model becomes 
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t                      model   

 

T           0 py(T) a x(T) a x(T p) (T)+ + + − = ε

T-1           0 py(T 1) a x(T 1) a x(T p 1) (T 1)− + − + + − − = ε −

.                   … 

.                   … 

.                   … 

n+p       (3.2) 0 py(n p) a x(n p) a x(n) (n p)+ + + + + = ε +

 

Therefore, all observations used in (3.2) are available in the observed sample 

{x(n),…,x(T)}. However the algorithm proposed in Penm et al (1995) use the pre-

windowed case, which will use unobserved observations to undertake estimation.  For 

a given observed sample {x(1),…,x(T)}, the model using the pre-windowed case 

becomes    

t                      model   

 

T           0 py(T) a x(T) a x(T p) (T)+ + + − = ε

T-1           0 py(T 1) a x(T 1) a x(T p 1) (T 1)− + − + + − − = ε −

.                   … 

.                   … 

.                   … 

p       (3.3) 0 py(p) a x(p) a x(0) (p)+ + + = ε

p-1       0 py(p 1) a x(p 1) a x( 1) (p 1)− + − + + − = ε −

… 

1      0 py(1) a x(1) a x( p 1) (1)+ + + − + = ε . 

 15



 

The pre-windowed case therefore needs observations prior to time 1, {x(0),x(-1),..x(-

p+1)}, and so consider x(0), x(-1),…x(-p+1) all equal to zero. Since the pre-

windowed case has x(-p+1) as the starting point of the data range, and consider each 

earlier unseen observation is equal to zero, this case is definitely different from the 

exact-windowed case. The implication is that significantly different parameter 

estimates can be obtained, in particular, in small sample cases.  

 

Also, the forgetting factor has been incorporated into K and τ in the current 

forgetting-factor inclusive algorithm. Therefore the current forgetting-factor inclusive 

algorithm is different from the algorithm without the forgetting factor proposed in 

Penm et al (1995), and thus will produce different estimation results, in particular in 

small sample cases.   

 

Further, the current algorithm is a coefficient-based time update algorithm, which can 

detect evolutionary changes in model structures. However the proposed lattice order 

update algorithms in Haykin (1996) are residual-based algorithms, which undertake 

recursions, moving from low-order models to high-order models, so no evolutionary 

changes are captured through parameter updating. Therefore the focus of Haykin 

(1996) is not on the evolution over time of the parametric structure of the system. The 

focus of  Haykin (1996) is only on checking at each time point of the data how the 

order and the subset make-up of the DL changes, i.e. on lag length and subset lag 

inclusion or exclusion.  

 

5. The causal relationship between futures and the underlying assets 

Two illustrations are presented to demonstrate the practical use of the algorithm. In 

the first illustration the relationship between Australian’s ten-year Commonwealth 

Treasury bond futures contracts (TBFC) and the underlying bond assets is examined.  
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In the second one, the relationship between Australian’s All Ordinaries Share Price 

Index (AOI) and Australian’s All Ordinaries Share Price Index futures (SPI) is 

investigated. A futures contract is one of the most important hedging instruments for 

the underlying asset. Both bond and stock index futures have many attractive hedging 

benefits for a trader who wishes to trade the underlying asset portfolio corresponding 

to the index. In Australia, Commonwealth Government bonds are the most important 

fixed interest securities, in line with government borrowing. The main 

Commonwealth Government bond security is the 10-year Commonwealth Treasury 

bond (TB), which is traded on the Australian Stock Exchange. The Sydney Futures 

Exchange offers a futures contract on the ten-year Treasury bond. This contract is 

available on a quarterly expiry date and is known as the ten-year Commonwealth 

TBFC. 

 

Further, the main stock market indicator is the AOI. The index is calculated on the 

basis of market capitalisation of the constituent stocks traded on the Australian Stock 

Exchange. The Sydney Futures Exchange offers a futures contract on the AOI. This 

contract is available on a quarterly expiry date and is known as the SPI Futures 

Contract. 

 

There is already a considerable literature examining the relationship between futures 

and the underlying asset market prices. The literature has examined either theoretical 

relationships between the markets through models such as the cost-of-carry (see 

Brailsford and Hodgson, 1997), or the causality between the markets through lead-lag 

relationships, cointegration tests or bivariate spillover models (see Chan, 1992; 

Martens et al, 1996). The general findings confirm a strong causality between the 

markets (see Wahab and Lashgari, 1993; Abhyankar, 1995). This relationship is not 

unexpected given the pricing relationship between the markets and the fact that the 

basis reduces to zero at the maturity of the futures contract. However there has been 
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debate about the direction of causality, with the evidence generally indicating that the 

futures market leads the stock market. In particular, Chan (1992) has examined the 

lead-lag relation between returns of the Major Market cash index and returns of the 

Major Market Index futures and S&P 500 futures. His results indicate that the futures 

price is a leading indicator for the spot, when stock prices move together under 

market-wide movements. Tse (1995) has studied the causal relation between stock 

index futures and cash index prices in Japan, and documents that futures prices cause 

cash index prices.   

 

For the first illustration, data on the TB, TBFC, AOI and SPI are sampled daily 

between 18 March 2003 and 10 September 2003. Both the TB and AOI data are 

observed as the daily market closing value whereas both the TBFC and SPI data are 

observed as the last traded price on each day in the September 2003 contract. Graphs 

of log TB, log TBFC, log AOI and log SPI in first differences are shown in Figures 3, 

4, 5 and 6 respectively. To test for the unit-roots for each plotted series, Microfit 4.0 

is used to carry out the augmented Dickey-Fuller (ADF) unit root test. The 95 per 

cent critical values for each test computed using the response surface estimates, 

indicate that whereas all log TB, log TBFC, log AOI and log SPI are non-stationary, 

their data in first differences, TB, log∆ log∆ TBFC, log∆ AOI and SPI, are 

stationary for the period 18 March 2003 to 11 August 2003 (T= 105). Furthermore, 

TB, TBFC, AOI and 

log∆

log∆ log∆ log∆ log∆ SPI continue to be stationary for the 

extended period from 18 March 2003 to 11 August 2003. 

 

The algorithm developed in Section 2 is used to model the relationships between the 

TB and TBFC. In detecting the causal relationship from log TBFC to log TB, the 

variables used are y(t) = log TBFC and x(t) = log TB. As discussed above, neither log 

TBFC nor log TB are stationary.  Therefore, the forgetting factor, λ, is incorporated 

to allow for the presence of non-stationarity. To begin it is assumed P=16, which 

                                                18



corresponds to a three-week period (i.e. 15 business days). The evolutionary kernel-

based SDL recursions described above are then used to select the 'optimal' 

specification of the discrete lag models at T=105, 106,… , 112.  

 

For the causal relationship from log TB to log TBFC, the optimal discrete lag models 

with λ=0.999 and 0.985 are presented in Table 2. To check the adequacy of each 

optimal model fit, the strategy suggested in Tiao and Tsay (1989) and Brailsford et al 

(2001) is used, with the proposed Penm and Terrell (1984) algorithm applied to test 

each residual series.1 The results in table 1 support the hypothesis that each residual 

series is a white noise process. These optimal models are then used as the benchmark 

models for analysing the causal relationships. The lower value of λ is consistent with 

strong persistence in market price fluctuations. For brevity, only the results obtained 

by the MHQC are presented. For cases where λ is less than 0.985, the selected models 

are not reported due to the small effective sample size (<50).  

 

To assess the causality from log TB to log TBFC, a SDL model for λ =0.999 and 

0.985 with lags (0, 2, 7) was selected by the MHQC at T=105, 106,… , 110. At 

T=111, the lag structure selected changes to (0, 2). In this case the predicted output, 

log TBFC, is related to the current and previous inputs of log TB.  Also, the lag 0 

indicates instantaneous causality from TBFC and TB. These results indicate that 

instantaneous and direct causal relationships exist from the bond market to the futures 

market, even when emphasis is placed on recent data. 

 

                                                           
1 In subset time-series modeling Tiao and Tsay (1989) propose an algorithm using the 
crit(m,j) criterion to select the subset autoregressive moving average process. After the final 
model is selected, their algorithm is then applied to the residual series to test whether this 
series is a  white noise process. 
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For the causal relationship from log TBFC to log TB, Table 3 shows the optimal 

discrete lag models with λ=0.999 and 0.985. These results strongly support the 

existence of instantaneous and bi-directional causal relationships between the 

Australian bond and index futures markets. Also, the results in table 3 support the 

hypothesis that each residual series is a white noise process 

 

For the second illustration, Table 4 presents a subset model for λ =0.999 with lags (0, 

1, 5), to assess the causality from log SPI to log AOI, which was selected by the 

MHQC at T=105,… , 109. At T=110, the lag structure selected changes to (0, 5). In 

this case, the model specifications indicate that log AOI is related to the current and 

previous inputs of log SPI.  Also, the lag 0 indicates instantaneous causality between 

AOI and SPI. For λ =0.985, The optimal model with lags (0, 5) is selected at 

T=105,… , 112. These results indicate that both instantaneous and direct causal 

relationships exist from the futures market to the stock market when emphasis is 

placed on recent data. 

 

For the causal relationship from log AOI to log SPI, Table 5 shows the optimal 

discrete lag models with λ=0.999 and 0.985. These results strongly support the 

existence of instantaneous causal and bidirectional feedback relationships between 

the Australian stock and index futures markets. These conclusions are generally 

consistent with those reported elsewhere in similar markets by Wahab and Lashgari 

(1993), and Abhyankar (1995).  

 

In general these outcomes can be explained by reference to transaction costs, time 

delays in computing the index, execution costs, and measurement errors (see Chan, 

1992). In addition to speculators, some other investors, particularly institutional 

investors, participate in the futures market for hedging purposes. Usually they take 

opposite positions in the underlying asset market and the futures market at the same 

                                                20



time, in order to hedge their exposure. Since they participate in both markets, price 

information will flow between the two markets. Therefore the finding of bidirectional 

causal relationships between these two markets is consistent with our prior 

hypotheses. 

 

Note there are other financial variables which could play a significant role in the 

above asset market analysis.  This application merely demonstrates the usefulness of 

the proposed evolutionary kernel-based SDL recursive algorithm in time-series 

analysis. 
 

6. Summary 

In this paper an evolutionary kernel-based time update algorithm has been presented 

to recursively estimate SDL models with a forgetting factor, using the exact-

windowed case. Two financial market illustrations to demonstrate the use of the 

proposed evolutionary algorithm are provided. Compared to the pre-windowed case, 

the exact-windowed case utilises only the available observations, without any 

assumption on unseen observations, to estimate model coefficients. We prefer 

evolutionary parameter updating algorithms because they allow users to update subset 

time-series models at consecutive time instants, and can show evolutionary changes 

detected in model structures. This is in contrast to residual-based order update 

algorithms (see Haykin, 1996), which undertake recursions, moving from low-order 

models to high-order models, whereby no evolutionary changes are captured through 

parameter updating. 
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Figure 1: A four-variable tree diagram which illustrates the reciprocal integer pairs of subset AR 
models up to and including lag length P=4.  Of note, numerals denote particular lags in a forward AR 
and numerals in italics denote such leads in a backward AR. 
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Figure 2:  Both K and τ acquired by using the time updating approach for an AR(4) variable case and 
the associated SDL variable case. 
 
 a) Using the recursions (2.18e) and (2.18h) 
 
                                              T=97                                               T=98 
    
 123      1234 (0123) 
  
 12 123 (012) 
 
 13  124 (013)  
 
 23                                                    134 (023) 
 
 1   12  (01) 
 
 2                                                        13 (02) 
 
 3                                                        14 (03) 
 
 0                                                         1 (0) 
 
b) Using the relations Kp,n,T+1(Is) = Kp-k,n,T+1-k(Ik)  and τ p,n,T+1(Is) = τ p-k,n,T+1-k(Ik) 
 
        T=95             T=96          T=97                                              T=98 
 
                                                  123                                            > 234  (123)                   
                                                   12                                             > 23  (12) 
                                                   13                                              > 24 (13)  
                                12                                                                    >34  (23) 
                                                    1                                               > 2 (1)  
                                  1                                                                  > 3 (2)  
             1                                                                                       > 4 (3)  
 
. Only the forward AR of each pair has been listed. 
. Underline numerals denote particular lags in a SDL whose parameters will be updated by 
using both K and τ acquired  
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Figure 3 

Log TB in first differences, daily: 18 March 2003 to 10 September 2003 
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Figure 4 

Log TBFC in first differences, daily: 18 March 2003 to 10 September 2003 
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Figure 5 

Log AOI in first differences, daily: 18 March 2003 to 10 September 2003 
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Figure 6 

Log SPI in first differences, daily: 18 March 2003 to 10 September 2003 
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Table 1: The forward-time update recursions from T to T+1 for subset AR forgetting-factor inclusive 
models with intercept variable  
════════════════════════════════════════════════ 

p,n,T sH (I ) , , p,n,TU (I ) p,n,T sK (I ) , p,n,T sτ (I ) , p,n,T sG (M ),λ , 

p,T 1 s X (O ),  + p 1,T 1 s p,n,T s X (I ),  U (M )− + , p,n,T s p,T sA (I ), (I ),Ω  and y(T+1) are available 
 
Recursions:   
 

p,n,T 1 s p,n,T s p,T 1 se (I ) [1  H (I )] X (O )+ +′=  (2.18a) 
1

p,n,T 1 s p,n,T 1 s p,n,T s(I ) e (I ) (I )−
+ +ε = τ  (2.18b) 

p,n,T 1 s p,n,T s p,n,T s p,n,T 1 sH (I ) H (I ) K (I ) (I )+ = − ε +  (2.18c) 

p,n,T 1 s p,n,T s p,n,T 1 s p,n,T 1 sU (I ) U (I ) (I ) e (I )+ += λ + ε +  (2.18d) 

1
p 1,n,T 1 s p,n,T s p,n,T 1 s

p,n,T s p,n,T s

0 1
K (L )  U (I ) e (I )

K (I ) H (I )
−

+ + +

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2.18e) 

partition p 1,n,T 1 s
DK (L )
d+ +

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

p,n,T 1 s p,n,T se (M ) U (M )d+ = λ  (2.18f) 

p,n 1,T 1 s p,n,T sK (L ) D G (M+ + = − )d  (2.18g) 
1

p 1,n,T 1 s p,n,T s p,n,T 1 s p,n,T s(L ) (I ) e (I )U (I )−
+ + +τ = τ + p,n,T 1 se (I+ )  (2.18h) 

p,n 1,T 1 s p 1,n ,T 1 s p,n ,T 1 s(L ) (L ) e (M )d+ + + + +τ = τ −  (2.18i) 
1

p,n,T 1 s p,n,T 1 s p,n 1,T 1 s(M ) e (M )[ (L )]−+ + + +ε = τ  (2.18j) 

p,n,T 1 s p,n,T s p,n,T 1 s p,n,T 1 sU (M ) U (M ) (M )e (M+ += λ + ε )+  (2.18k) 

p,n,T 1 s p,n,T s p,n 1,T 1 s p,n,T 1 sG (M ) G (M ) K (L )ε (M )+ + += − +  (2.18l) 

p 1,n,T 1 sK (I )+ + = p 1 p 1,n,T 1 s(I )+ + +

− +

P K   (2.18m) 

p,n,T 1 s p,n,T s p 1,T 1 s(I ) y(T 1) A (I )X (I ) + ′θ = + +   (2.18n) 
1

p,n,T 1 s p,n,T 1 s p,n,T 1 s(I ) (I ) (I )−
+ +η = θ τ +  (2.18o) 

p,n,T 1 s p,n,T s p,n,T 1 s p,n,T 1 sA (I ) A (I ) K (I )  (I )+ += − η +  (2.18p) 

p,T 1 s p,T s p,n,T 1 s p,n,T 1 s(I ) (I ) (I )  (I )+ +Ω = λΩ +η θ +  (2.18q) 
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Table 2 
The SDLs selected by MHQC for detecting the causal relationship from TB to TBFC 
Sample size (T) Non-zero lag structure 

 for y(t)=log TBFC and x(t)=log TB 
 
Pattern of causalitya 

 λ =0.999 λ =0.985  
105,106,107,108,109, 
110 

0 2 7  0  2 7 log TB→ log TBFC 

 111,112 0 2  0 2 log TB→ log TBFC 
(a) w → z: w causes z directly and instantaneously. 
(b) To check the adequacy of the model fit, the results in table 2 support the hypothesis that the residual series of 
each selected model is a white noise process. 
 

Table 3 
The SDLs selected by MHQC for detecting the causal relationship from TBFC to TB 

Sample size 
(T) 

Non-zero Lag Structure 
for y(t)=log TB and x(t)=log TBFC 

 
Pattern of causalitya 

 λ =0.999 λ =0.985  
105,106,107,108,109, 
110,111,112 

0 2 0 2 Log TBFC → log TBI 

(a) w → z: w causes z directly and instantaneously. 
(b) To check the adequacy of the model fit, the results in table 2 support the hypothesis that the residual series of 
each selected model is a white noise process. 
 

Table 4 
The SDLs selected by MHQC for detecting the causal relationship from SPI to AOI 
 
Sample size(T) 

Non-zero lag structure 
 for y(t)=log AOI and x(t)=log SPI 

 
Pattern of causalitya 

 λ =0.999 λ =0.985  
105,106,107,108,109 0 1 5  0  5 log SPI → log AOI 
110,111,112 0 5  0  5 log SPI → log AOI 
(a) w → z: w causes z directly and instantaneously. 
(b) To check the adequacy of the model fit, the results in table 2 support the hypothesis that the residual series of 
each selected model is a white noise process. 
 

Table 5 
The SDLs selected by MHQC for detecting the causal relationship from AOI to SPI 

Sample size 
(T) 

Non-zero Lag Structure 
for y(t)=log SPI and x(t)=log AOI 

 
Pattern of causalitya 

 λ=0.999 λ=0.985  
105,106,107,108,109 0 1 5 0 1 5 log AOI → log SPI 
110,111,112 0 5 0 5 log AOI → log SPI 

(a) w → z: w causes z directly and instantaneously. 
(b) To check the adequacy of the model fit, the results in table 2 support the hypothesis that the residual series of 
each selected model is a white noise process. 
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